Answer:
It lies in in the <u>visible</u><u> </u><u>region</u><u>.</u>
Frequency: <u>is</u><u> </u><u>7</u><u>.</u><u>4</u><u>0</u><u>7</u><u> </u><u>×</u><u> </u><u>1</u><u>0</u><u>^</u><u>-</u><u>1</u><u>4</u><u> </u><u>Hz</u>

Explanation:
V is speed of light.
f is frequency
lambda is the wavelength
Always remember that a compound can be separated into simpler substances by chemical methods/reactions. While elements cannot be broken down into simpler substances by chemical reactions. You can do a flame test and spectrum analysis to determine whether a solid material is an element or a compound. Check the boiling and/or melting point, color or density. Also check the solid material’s reaction with oxygen, hydrogen, calcium, or various acids. Examine and study its physical chemistry. The element(s) that may be present may be identified by checking the absorption edges from an x-ray spectrum.
V(C₄H₆O₃) = 5.00 mL.
d(C₄H₆O₃) = 1.08 g/mL.
m(C₄H₆O₃) = V(C₄H₆O₃) · d(C₄H₆O₃).
m(C₄H₆O₃) = 5.00 mL · 1.08 g/mL.
m(C₄H₆O₃) = 5.4 g.
n(C₄H₆O₃) = m(C₄H₆O₃) ÷ M(C₄H₆O₃).
n(C₄H₆O₃) = 5.4 g ÷ 102 g/mol.
n(C₄H₆O₃) = 0.0529 mol.
n(C₇H₆O₃) = 2.08 g ÷ 138.1 g/mol.
n(C₇H₆O₃) = 0.015 mol; limiting reactant.
From chemical reaction: n(C₄H₆O₃) : n(C₉H₈O₄) = 1 : 1.
n(C₉H₈O₄) = 0.015 mol.
m(C₉H₈O₄) = 0.015 mol · 180.16 g/mol.
m(C₉H₈O₄) = 2.71 g; theoretical yield.
percent yield od aspirine = 2.57 g ÷ 2.71 g · 100% = 94.83%.
Probably CH(subscript)4... :) It's Methane
Answer:

Explanation:
First of all we need to calculate the heat that the water in the cooler is able to release:

Where:
- Cp is the mass heat capacity of water
- V is the volume
is the density


To calculate the mass of CO2 that sublimes:

Knowing that the enthalpy of sublimation for the CO2 is: 

