Answer:
200 lb•ft/s
Explanation:
From the question given above, the following data were obtained:
Force (F) = 2 tons
Time (t) = 5 mins
Height (h) = 15 ft
Power (P) =?
Next, we shall convert 2 tons to pound. This can be obtained as follow:
1 ton = 2000 lb
Therefore,
2 tons = 2 × 2000
2 tons = 4000 lb
Next, we shall convert 5 mins to seconds. This can be obtained as follow:
1 min = 60 s
Therefore,
5 mins = 5 × 60
5 mins = 300 s
Finally, we shall determine the power of the pump. This can be obtained as follow:
Force (F) = 4000 lb
Time (t) = 300 s
Height (h) = 15 ft
Power (P) =?
P = F × h / t
P = 4000 × 15 / 300
P = 60000 / 300
P = 200 lb•ft/s
Thus, the power of the pump is 200 lb•ft/s
Ether
methoxypropane (methyl propyl ether)
I guess you are asking what world should go at the beginning of the sentence. If I am right, it is energy.
The percent concentration of a solution can be calculated from; mass of solute /mass of solution * 100. The mass of the solute here is 8.1 g.
<h3>What is concentration?</h3>
The term concentration refers to the amount of solute presnt in a solution. There are many ways of expressing concentration such as molarity, molality and percentage.
Here;
mass of solution = 230.5 g
Percent of solute = 3.5 %
3.5 = x/ 230.5 * 100
3.5 = 100x/230.5
230.5(3.5) = 100x
x = 230.5(3.5) /100
x = 8.1 g
Learn more about percent concentration: brainly.com/question/202460?
Answer:
Chloroform= limiting reactant
0.209mol of CCl4 is formed
And 32.186g of CCl4 is formed
Explanation:
The equation of reaction
CHCl3 + Cl2= CCl4 + HCl
From the equation 1 mol of
CHCl3 reacts with 1mol Cl2 to yield 1mol of CCl4
From the question
25g of CHCl3 really with Cl2
Molar mass of CHCl3= 119.5
Molar mass of Cl2 = 71
Hence moles of CHCl3= 25/119.5 = 0.209mol
Moles of Cl2 = 25/71 = 0.352mol
Hence CHCl3 is the limiting reactant
Since 1 mole of CHCl3 gave 1mol of CCl4
It implies that 0.209moles of CHCl3 will also give 0.209mol of CCl4
Mass of CCl4 formed = moles× molar mass= 0.209×154= 32.186g