Answer:
Acceleration is the change in velocity over the change in time = Δv/Δt. To do these problems, you need to find out how much the speed changed and over what period of time it changed.
Snail 1 changes from 4 cm/min to 7 cm/min in 3 minutes. Subtract the starting velocity (4 cm/min) from the ending velocity (7 cm/min) then divide by the time (3 min):
Snail 1 = (7 cm/min. - 4 cm/min)/(3 minutes) = ? (remember to put down the units)
Snail 2 changed from 7 cm/min. down to 1 cm/min. in 3 minutes
Snail 2 = (1 cm/min. - 7 cm/min.)/(3 min.) = ? (note that the acceleration is negative when you slow down)
I hope this helps you
You can’t solve it because you don’t have c in the question
Answer:
so easy add the subtract then multiplay the add
Explanation:
Answer:
Technician A is correct
Explanation:
The best approach to solve the problem is that of technician A. using a fluorescent die is the easiest and most efficient way to trace leaks with unknown sources. The fluorescent die will simply illuminate the path to the leaking spot in the engine of the car, without any need for much speculations. This makes this method a sure approach.
However, Technician B's approach still has a lot of assumptions factored into the methodology, and would not work properly. It will still require the painstaking attempts trying to make guesses where the oil leak is coming from, which will lead to wastage of time and energy.
This makes Technician A have the right approach to solving the problem
Answer:
1525 meters above ground
Explanation:
So to do this you will need to write this in slope intercept form or . So 650 would be the b, 175 would be the m, and the x would be 5 so the equation would be so if you solve or simplify the equation you will get 1525 meters above the ground and that would be our final answer.