Answer:
Diffusion requires energy only to move material through the cell membrane.
Explanation:
:)
Answer:
21.28 m
Explanation:
height, h = 71 m
velocity of raft, v = 5.6 m/s
let the time taken by the stone to reach to raft is t.
use second equation of motion for stone

u = 0 m/s, h = 71 m, g = 9.8 m/s^2
71 = 0 + 0.5 x 9.8 x t^2
t = 3.8 s
Horizontal distance traveled by the raft in time t
d = v x t = 5.6 x 3.8 = 21.28 m
Answer:
Bar graph
Explanation:
each day collects data so a bar graph would work.
The concept required to solve this problem is associated with potential energy. Recall that potential energy is defined as the product between mass, gravity, and change in height. Mathematically it can be described as

Here,
= Change in height
m = mass of super heroine
g = Acceleration due to gravity
The change in height will be,

The final position of the heroin is below the ground level,

The initial height will be the zero point of our system of reference,


Replacing all this values we have,



Since the final position of the heroine is located below the ground, there will net loss of gravitational potential energy of 10744.81J