1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bad White [126]
3 years ago
10

Consider an electron and a proton that are initially at rest and are separated by 2.00 nm. Neglecting any motion of the much mor

e massive proton, what is the minimum (a) kinetic energy and (b) speed that the electron must be projected at so it reaches a point a distance of 12.0 nm from the proton? Assume the electron’s velocity is directed radially away from the proton. (c) How far will the electron travel away from the proton if it has twice that initial kinetic energy?
Physics
1 answer:
7nadin3 [17]3 years ago
7 0

Answer:

a)W = 57.6\times10^{-19} J

b) v =   3.556\times10^6 m/s

c) displacment = 400nm

Explanation:

Given that

charge of the electron and proton q =1.6\times10^{-19} C

the distance between electron and proton = 2.0 nm

The force between the proton and electron

F = kq^/r^2

Here k = 9\times10^9 N.m^2/C^2

F = (9\times10^9)(1.6\times10^-19)(1.6\times10^-19)/(2.0\times10^-9)^2   \\= 5.76\times10^-11N

The work done in displacing the electron from 2.0 nm to 12 nm

is the minimum kinetic energy

W = F .s

W = (5.76\times10^{-11}N)(10\times10^{-9} m)\\W = 57.6\times10^{-19} J

(b)

If this energy is the kinetic energy of the electron

(1/2) m v^2 \\= 57.6\times10^{-19} J

Here m is the mass of the electron =9.0\times10^{-31} kg

The speed of the electron v =   3.556\times10^6 m/s

(c)

If the kinetic energy is twice the initial kinetic energy

2*(initial kinetic energy) = F*displacement

displacement = 2*(initial kinetic energy)/F

Displacement = 2(57.6\times10^{-19} J)/(5.76\time10^{-11}N)

displacement = 400 nm

You might be interested in
A small omnidirectional stereo speaker produces waves in all directions that have an intensity of 8.00 at a distance of 4.00 fro
slavikrds [6]

Answer:

A. We have that radius r = 4.00m intensity I = 8.00 W/m^

total power = power/ Area ( 4πr2)= 8.00 w/m^2( 4π ( 4.00 m)2=1607.68 W

b) I = total power/ 4πr2= 8.00 W/m2 ( 4.00 m/ 9.5 m)2= 1.418 W/m2

c) E = total power x time= 1607 . 68 W x 1s= 1607.68 J

5 0
3 years ago
Problem:
Mars2501 [29]
I do have a couple ideas and tips that may help you win. I don’t know how the guidelines are set up so if the ideas won’t be helpful I apologize.

First off put some ice cubes in the container then sprinkle salt on them, The reaction will create an effect and be super cold.


Another idea would be to get some dry ice if you able to, This will freeze it solid within seconds.


The last idea combines the the first. Take a bowl and fill it with with water and ice (Make sure the bowl is insulated) add a small handful of salt into the bowl, Put your drink into the cooler and before shutting stir then well then close and wait for the amount of time left, Your should have a cold water bottle.


I hoped this helped you out and I hope you also win the contest.
8 0
3 years ago
Three forces act on an object. Two of the forces are at an angle of 100◦to each other and have magnitude 25N and 12N. The third
seraphim [82]

Answer:

F₄ = 29.819 N

Explanation:

Given

F₁ = (- 25*Cos 50° i + 25*Sin 50° j + 0 k) N

F₂ = (12*Cos 50° i + 12*Sin 50° j + 0 k) N

F₃ = (0 i + 0 j + 4 k) N

Then we have

F₁ + F₂ + F₃ + F₄ = 0

⇒   F₄ = - (F₁ + F₂ + F₃)

⇒   F₄ = - ((- 25*Cos 50° i + 25*Sin 50° j) N + (12*Cos 50° i + 12*Sin 50° j) N + (4 k) N) = (13*Cos 50° i - 37*Sin 50° j - 4 k) N

The magnitude of the force will be

F₄ = √((13*Cos 50°)² + (- 37*Sin 50°)² + (- 4)²) N = 29.819 N

6 0
3 years ago
A 2 eV electron encounters a barrier 5.0 eV high and width a. What is the probability b) 0.5 that it will tunnel through the bar
denis23 [38]

Answer:

The tunnel probability for 0.5 nm and 1.00 nm are  5.45\times10^{-4} and 7.74\times10^{-8} respectively.

Explanation:

Given that,

Energy E = 2 eV

Barrier V₀= 5.0 eV

Width = 1.00 nm

We need to calculate the value of \beta

Using formula of \beta

\beta=\sqrt{\dfrac{2m}{\dfrac{h}{2\pi}}(v_{0}-E)}

Put the value into the formula

\beta = \sqrt{\dfrac{2\times9.1\times10^{-31}}{(1.055\times10^{-34})^2}(5.0-2)\times1.6\times10^{-19}}

\beta=8.86\times10^{9}

(a). We need to calculate the tunnel probability for width 0.5 nm

Using formula of tunnel barrier

T=\dfrac{16E(V_{0}-E)}{V_{0}^2}e^{-2\beta a}

Put the value into the formula

T=\dfrac{16\times 2(5.0-2.0)}{5.0^2}e^{-2\times8.86\times10^{9}\times0.5\times10^{-9}}

T=5.45\times10^{-4}

(b). We need to calculate the tunnel probability for width 1.00 nm

T=\dfrac{16\times 2(5.0-2.0)}{5.0^2}e^{-2\times8.86\times10^{9}\times1.00\times10^{-9}}

T=7.74\times10^{-8}

Hence, The tunnel probability for 0.5 nm and 1.00 nm are  5.45\times10^{-4} and 7.74\times10^{-8} respectively.

6 0
3 years ago
Which demonstrates simple harmonic motion?
LUCKY_DIMON [66]
Where are the pictures or options?
7 0
3 years ago
Read 2 more answers
Other questions:
  • A boy throws a ball and accidentally breaks a window. The momentum of the ball and all the pieces of glass taken together after
    7·2 answers
  • The official web site of the Nobel Prize explains that Marie Curie’s chemistry prize was partly for her discovery that the radio
    14·1 answer
  • What are the kinematic formulas?​
    14·1 answer
  • How is tidal energy obtained
    12·1 answer
  • A swimmer bounces straight up from a diving board and falls feet first into a pool. She starts with a velocity of 4.00 m/s, and
    12·1 answer
  • F= (9.3 x 105 )(4.2 x 10-15)
    8·1 answer
  • When dribbling you should?
    12·1 answer
  • John attached a ball to a spring
    13·1 answer
  • OC: Dog owner plays with the puppy when it bites, it bites more often.
    9·1 answer
  • Students in a science class were shown three identical bulbs, each with a resistance of 50 Ω, connected to a 1.5-volt battery as
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!