A low electronegativity
Explanation:
Potassium is a metal that is expected to have a very low electronegativity value.
Electronegativity is the relative tendency by which an atom attracts valence electrons in a chemical bond.
Potassium is an element in the first group on the periodic table.
The common trend is that electronegativity increases from left to right and decreases down a group.
- Potassium as metal will prefer to lose electrons rather than attracting because that will make it achieve the octet configuration that will ensure its stability.
- This is why it will have low electronegativity.
Learn more:
Electronegativity brainly.com/question/11932624
#learnwithBrainly
Fluorine 20 (F - Atomic number 9 and atomic mass 20). Firstly we need to know what is beta decay. Beta decay occurs when one neutron changes into a proton and an electron therefore the atomic mass will remain the same as even though we loose a neutron it is replaced by a proton, the atomic number is always raised by 1 when one beta decay occurs. The produced electron is shot out of the nucleus at an incredible speed. This speedy electron we call a beta particle.
Ok now the reaction.
20 20 0
F -> Ne + e
9 10 -1
Remember the atomic number determines the nature of the element ( i.e what elemnt it is).
Hope this helps :).
Answer: 4.41 atm
Explanation:
Given that,
Original pressure of oxygen gas (P1) = 5.00 atm
Original temperature of oxygen gas (T1) = 25°C
[Convert 25°C to Kelvin by adding 273
25°C + 273 = 298K
New pressure of oxygen gas (P2) = ?
New temperature of oxygen gas (T2) = -10°C
[Convert -10°C to Kelvin by adding 273
-10°C + 273 = 263K
Since pressure and temperature are given while volume is held constant, apply the formula for Charle's law
P1/T1 = P2/T2
5.00 atm /298K = P2/263K
To get the value of P2, cross multiply
5.00 atm x 263K = 298K x V2
1315 atm•K = 298K•V2
V2 = 1315 atm•K / 298K
V2 = 4.41 atm
Thus, the new pressure inside the canister is 4.41 atmosphere