ΔG⁰ = ΔH⁰ - T ΔS⁰
ΔG⁰ : Standard free energy of formation of acetylene
ΔH⁰ : Standard enthalpy of formation (226.7 kJ/mol)
ΔS⁰ : Standard entropy change (58.8 J / K. mol)
T : Temperature 25°C = 298 K (room temperature)
ΔG⁰ = 226.7 - (298 x 58.8 x 10⁻³) = 209.2 kJ /mol
Given mass of Scandium = 50.0 g
Increase in temperature of the metal when heated = 
Heat absorbed by Scandium = 
The equation showing the relationship between heat, mass, specific heat and temperature change:

Where Q is heat = 
m is mass = 50.0 g
ΔT = 
On plugging in the values and solving for C(specific heat) we get,
=50.0g(C)(
)
C = 0.491
Specific heat of the metal = 0.491
<span>E.) In a chemical reaction, the final amount of the products is determined by the "None of the above"
[ Depends on all physical conditions & chemical situation ]
Hope this helps!</span>
Answer:
# 5
Explanation:
The question describes silver being "poured" into a mold and cools to become a solid bar. This is the phase of liquid to solid. When a element cools down below it's freezing points to become a solid.
<u>Liquid to Solid Definition:</u>
Freezing, or solidification, is a phase transition in which a liquid turns into a solid when its temperature is lowered to or below its freezing point. All known liquids, except helium, freeze when the temperature is low enough.