Answer:
It will be reported too low.
Explanation:
To measure the specific heat of the metal (s), the calorimeter may be used. In it, the metal will exchange heat with the water, and they will reach thermal equilibrium. Because it can be considered an isolated system (there're aren't dissipations) the total amount of heat (lost by metal + gained by water) must be 0.
Qmetal + Qwater = 0
Qmetal = -Qwater
The heat is the mass multiplied by the specific heat multiplied by the temperature change. If c is the specific heat of the water:
m_metal*s*ΔT_metal = - m_water *c*ΔT_water
s = -m_water *c*ΔT_water / m_metal*ΔT_metal
So, if m_water is now less than it was supposed to be, s will be reported too low, because they are directly proportional.
Answer:
151.1J
Explanation:
Given parameters:
Mass of iron = 6.21g
Initial temperature of iron = 25°C
Final temperature of iron = 79.8°C
Unknown:
Amount of heat = ?
Solution:
The amount of heat require to cause this temperature can be determined using the expression below;
H = m c (T₂ - T₁)
H is the amount of heat
m is the mass
c is the specific heat capacity
T is the temperature
Specific heat capacity of iron 0.444J/g°C
Insert the parameters and solve;
H = 6.21 x 0.444 x (79.8 - 25)
H = 151.1J
Answer:
c : 13%
Explanation:
Data Give:
Experimental density of vanadium = 6.9 g/cm³
percent error = ?
Solution:
Formula used to calculate % error
% error = [experimental value -accepted value/accepted value] x 100
The reported accepted density value for vanadium = 6.11 g/cm³
Put value in the above equation
% error = [ 6.9 - 6.11 / 6.11 ] x 100
% error = [ 0.79 / 6.11 ] x 100
% error = [ 0.129] x 100
% error = 12.9
Round to the 2 significant figure
% error = 13 %
So, option c is correct
There are 0.109 moles of NaCl in one tablespoon of salt. This is found by dividing the number of grams you have by the molecular weight.