Answer:
i = 0.5 A
Explanation:
As we know that magnetic flux is given as

here we know that
N = number of turns
B = magnetic field
A = area of the loop
now we know that rate of change in magnetic flux will induce EMF in the coil
so we have

now plug in all values to find induced EMF


now by ohm's law we have


The Image distance and Magnification of The Image will be 30 cm and 3.
<h3>What is focal length?</h3>
The focal length of the lens, which is often expressed in millimeters, is the distance between the lens and the image sensor when the subject is in focus.
Given data;
Focal length,f=?
Image distance,v=?
Object distance,u= 10 cm
Magnification,m= 2.85
The focal length is half of the radius;
f=R/2
f=30 Cm/2
f= 15 Cm
The mirror equation is found as;

The magnification of the lens is found as;

Hence, the image distance and magnification of The image will be 30 cm and 3.
To learn more about the focal length refer;
brainly.com/question/16188698
#SPJ1
Answer:
4 A
Explanation:
We are given that

I=12 A
We have to find the current flowing through each resistor.
We know that in parallel combination current flowing through different resistors are different and potential difference across each resistor is same.
Formula :

Using the formula



Substitute the values



Hence, current flows through any one of the resistors is 4 A.
Answer:
4 m/s
Explanation:
Momentum is defined as:

where
m is the mass of the object
v is its velocity
For the object in this problem, we know:
p = 200 kg m/s is the momentum
m = 50 kg is the mass
Solving for the velocity, we find:

Answer:

It will float.
Explanation:
Hello.
In this case, given the width, length and height, we can compute the volume as follows:

Moreover, since the density is computed via the division of the mass by the volume:

We obtain:

In such a way, since the solid has a lower density than the water, we infer it will float.
Best regards.