1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
faust18 [17]
3 years ago
6

A long wire carrying a 5.8 A current perpendicular to the xy-plane intersects the x-axis at x=−2.3cm. A second, parallel wire ca

rrying a 3.0 A current intersects the x-axis at x=+2.3cm.
Required:
a. At what point on the x-axis is the magnetic field zero if the two currents are in the same direction?
b. At what point on the x-axis is the magnetic field zero if the two currents are in opposite directions?
Physics
1 answer:
adoni [48]3 years ago
8 0

Answer:

a) v    r = 0.7318 cm , b)  r = 7.23 cm

Explanation:

The magnetic field generated by a wire carrying a current can be found with Ampere's law

       ∫ B. ds = μ₀ I

the length of a surface circulates around the wire is

    s = 2π r

where r is the point of interest of the calculation of the magnetic field

         B = μ₀ I / 2π r

In this exercise we have two wires, write the equation of the magnetic field of each one

wire 1     I = 5.8 A

         B₁ = μ₀ 5,8 / 2π r₁

wire 2    I = 3.0 A

         B₂ = μ₀ 3/2π r₂

the direction of the field is given by the rule of the right hand, the thumb indicates the direction of the current and the other fingers the direction of the magnetic field

Let's apply these expressions to our case

a) the two streams go in the same direction

     using the right hand rule for each wire we see that between the two wires the magnetic fields have opposite directions so there is some point where the total value is zero

          B₁ - B₂ = 0

           B₁ = B₂

         μ₀ 5,8 / 2π r₁ = μ₀ 3 / 2π r₂

          5.8 / r₁ = 3 / r₂

          5.8 r₂ = 3r₁

the value of r is measured from each wire, therefore

        r₁ = 2.3 + r

        r₂ = 2.3 -r

we substitute

          5.8 (2.3 - r) = 3 (2.3 + r)

           r (3 + 5.8) = 2.3 (5.8 - 3)

           r = 2.3 2.8 / 8.8

           r = 0.7318 cm

b) the two currents have directional opposite

with the right hand rule in the field you have opposite directions outside the wires

suppose it is zero on the right side where the wire with the lowest current is

         B₁ = B₂

        5.8 / r₁ = 3 / r₂

        5.8 r₂ = 3 r₁

         r₁ = 2.3 + r

         r₂ = r - 2.3

        5.8 (r - 2.3) = 3 (2.3 + r)

        r (5.8 -3) = 2.3 (3 + 5.8)

        r = 2.3 8.8 / 2.8

        r = 7.23 cm

You might be interested in
Coherent light of frequency 6.37×1014 Hz passes through two thin slits and falls on a screen 88.0 cm away. You observe that the
IgorC [24]

Answer:

The distance between the two slits is 40.11 μm.

Explanation:

Given that,

Frequency f= 6.37\times10^{14}\ Hz

Distance of the screen l = 88.0 cm

Position of the third order y =3.10 cm

We need to calculate the wavelength

Using formula of wavelength

\lambda=\dfrac{c}{f}

where, c = speed of light

f = frequency

Put the value into the formula

\lambda=\dfrac{3\times10^{8}}{6.37\times10^{14}}

\lambda=471\ nm

We need to calculate the distance between the two slits

m\times \lambda=d\sin\theta

d =\dfrac{m\times\lambda}{\sin\theta}

Where, m = number of fringe

d = distance between the two slits

Here, \sin\theta =\dfrac{y}{l}

Put the value into the formula

d=\dfrac{3\times471\times10^{-9}\times88.0\times10^{-2}}{3.10\times10^{-2}}

d=40.11\times10^{-6}\ m

d = 40.11\ \mu m

Hence, The distance between the two slits is 40.11 μm.

7 0
3 years ago
Twenty is the _________________ of potassium
Mumz [18]
Twenty is the atomic number of potassium.
7 0
3 years ago
Which statement correctly describes the gravitational potential energy of the pendulum based on this diagram?
MrRa [10]
I think it's 'C' but I won't know for sure until you let me see the diagram.
8 0
3 years ago
Light is incident along the normal to face AB of a glass prism of refractive index 1.54. Find αmax, the largest value the angle
marusya05 [52]

To solve this problem it is necessary to use the concepts related to Snell's law.

Snell's law establishes that reflection is subject to

n_1sin\theta_1 = n_2sin\theta_2

Where,

\theta = Angle between the normal surface at the point of contact

n = Indices of refraction for corresponding media

The total internal reflection would then be given by

n_1 sin\theta_1 = n_2sin\theta_2

(1.54) sin\theta_1 = (1.33)sin(90)

sin\theta_1 = \frac{1.33}{1.54}

\theta = sin^{-1}(\frac{1.33}{1.54})

\theta = 59.72\°

Therefore the \alpha_{max} would be equal to

\alpha = 90\°-\theta

\alpha = 90-59.72

\alpha = 30.27\°

Therefore the largest value of the angle α is 30.27°

3 0
3 years ago
All atomic nuclei except those of ordinary hydrogen contain neutrons<br> true or false
MatroZZZ [7]
The answer to this question is False
8 0
3 years ago
Other questions:
  • An approaching storm is moving at 15 km an hour what do you need to know to determine its velocity
    7·1 answer
  • If 0.035pC of charge is transferred via the movement of Al3+ ions, how's many of these must be transferred in total? Please add
    12·1 answer
  • How much does the gravitational force of attraction change between two asteroids if the two asteroids drift three times closer t
    6·1 answer
  • What is the atomic number of the atom shown?<br><br>A)3B)13C)14D)27<br><br>​
    8·1 answer
  • Which force does not operate at a distance of 1 m?
    10·2 answers
  • Which color of light refracts at the greatest angle when white light is incident on a prism?
    11·2 answers
  • Reason behind the study of refraction of light
    7·1 answer
  • A car starts with an initial speed of 12 m/s and accelerates at 3 m/s/s for 5 seconds
    15·1 answer
  • Question 1
    10·1 answer
  • Two large blocks of wood are sliding toward each other on the frictionless surface of a frozen pond. Block a has mass 4. 00 kg a
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!