The frequency of the pendulum is independent of the mass on the end. (c)
This means that it doesn't matter if you hang a piece of spaghetti or a school bus from the bottom end. If there is no air resistance, and no friction at the top end, and the string has no mass, then the time it takes the pendulum to swing from one side to the other <u><em>only</em></u> depends on the <u><em>length</em></u> of the string.
Hi! The answer is ‘B’! Because the nucleus is found at the center and contains protons (positive charge) and neutrons (no charge)
Before the engines fail , the rocket's horizontal and vertical position in the air are
and its velocity vector has components
After , its position is
and the rocket's velocity vector has horizontal and vertical components
After the engine failure , the rocket is in freefall and its position is given by
and its velocity vector's components are
where we take .
a. The maximum altitude occurs at the point during which :
At this point, the rocket has an altitude of
b. The rocket will eventually fall to the ground at some point after its engines fail. We solve for , then add 3 seconds to this time:
So the rocket stays in the air for a total of .
c. After the engine failure, the rocket traveled for about 34.6 seconds, so we evalute for this time :
Explanation:
Internal energy = heat + work
U = Q + W
Since there's no change in volume (rigid walls), W = 0.
U = Q
U = n Cᵥ ΔT
U = (4.0 mol) (2.5 × 8.314 J/mol/K) (354 C − 17 C)
U = 28,000 J