Answer:
Sorry I'm wrong The person above is correct.
I tried.
Answer:
The bullet's initial speed is 243.21 m/s.
Explanation:
Given that,
Mass of the bullet, 
Mass of the pendulum, 
The center of mass of the pendulum rises a vertical distance of 10 cm.
We need to find the bullet's initial speed if it is assumed that the bullet remains embedded in the pendulum. Let it is v. In this case, the energy of the system remains conserved. The kinetic energy of the bullet gets converted to potential energy for the whole system. So,
V is the speed of the bullet and pendulum at the time of collision
Now using conservation of momentum as :
Put the value of V from equation (1) in above equation as :

So, the bullet's initial speed is 243.21 m/s.
Answer:
Explanation:
Given
Resistor A has length 
and Resistor B has Length 
and Resistance is given by

Considering
and A to be constant thus
because 
(a)When they are connected in series
As the current in series is same and power is 
therefore
as R is greater for second resistor
(b)if they are connected in Parallel
In Parallel connection Voltage is same

resistance of 2 is greater than 1 thus Power delivered by 1 is greater than 2
Answer:
c) equals V
Explanation:
This is because, since the isolated, irregularly shaped piece of platinum is in electric equilibrium, the electric potential at all points on its surface is V. So that, the potential difference across any point is zero. This implies that diametrically opposite sides have the same potential and thus, the potential at other points of the surface is V since it is in electric equilibrium.