Answer:
For SI units the mass m = 5 kg.
Explanation:
The sum of all horizontal forces is must be equal to maₓ:
∑Fₓ = maₓ = 24N - 14N = 10N
maₓ = 10N
m = 10N / aₓ = 10N / 2 m/s² = 5 m/s
Answer:
F = 1.128 10⁸ Pa
Explanation:
Pressure is defined by
P = F / A
If the gas is ideal for equal force eds on all the walls, so on the piston area we have
F = P A
We reduce the pressure to the SI system
P = 150 kpa (1000 Pa / 1kPa = 150 103 Pa
we calculate
F = 150 10³ / 0.00133
F = 1.128 10⁸ Pa
Answer:
Vx = 35 x cos(13deg)
Vy = 35 x sin(13deg) - gt
(g is acceleration due to gravity =~9.8 meter/second^2, t is time in second)
Explanation:
The tiger leaps up, then x and y component of its velocity are:
Vx = Vo x cos(alpha)
Vy = Vo x sin(alpha) - gt
(Vo is tiger's initial velocity, alpha is angle between its leaping direction and horizontal plane)
Hope this helps!
Answer:
Explanation:
All the displacement will be converted into vector, considering east as x axis and north as y axis.
5.3 km north
D = 5.3 j
8.3 km at 50 degree north of east
D₁= 8.3 cos 50 i + 8.3 sin 50 j.
= 5.33 i + 6.36 j
Let D₂ be the displacement which when added to D₁ gives the required displacement D
D₁ + D₂ = D
5.33 i + 6.36 j + D₂ = 5.3 j
D₂ = 5.3 j - 5.33i - 6.36j
= - 5.33i - 1.06 j
magnitude of D₂
D₂²= 5.33² + 1.06²
D₂ = 5.43 km
Angle θ
Tanθ = 1.06 / 5.33
= 0.1988
θ =11.25 ° south of due west.
Answer:
The equivalent stiffness of the string is 8.93 N/m.
Explanation:
Given that,
Spring stiffness is





According to figure,
and
is in series
We need to calculate the equivalent
Using formula for series


Put the value into the formula


k and
is in parallel
We need to calculate the k'
Using formula for parallel

Put the value into the formula


,k' and
is in series
We need to calculate the equivalent stiffness of the spring
Using formula for series

Put the value into the formula


Hence, The equivalent stiffness of the string is 8.93 N/m.