Hello! When litmus paper is placed in an acid, it usually turns red. When it is placed in a base, it turns dark-purple. Hope this helps! :)
<span>Without friction, there will be undamped simple harmonic motion. The force of the spring is proportional to the distance from the equilibrium point. The period of oscillation will be independent of the amplitude.
I hope my answer has come to your help. God bless and have a nice day ahead!</span>
Answer:
The found acceleration in terms of h and t is:

Explanation:
(The complete question is given in the attached picture. We need to find the acceleration in terms of h and t in this question)
We are given 3 stages of movement of elevator. We'll first model them each of the stage one by one to find the height covered in each stage. After that we'll find the total height covered by adding heights covered in each stage, and equate it to Total height h. From that we can find the formula for acceleration.
<h3>
</h3><h3>
Stage 1</h3>
Constant acceleration, starts from rest.
Distance = 
Velocity = 
<h3>Stage 2</h3>
Constant velocity where
Velocity = 
Distance =
<h3>

</h3><h3 /><h3>Stage 3</h3>
Constant deceleration where
Velocity = 
Distance =

<h3>Total Height</h3>
Total height = y₁ + y₂ + y₃
Total height = 
<h3 /><h3>Acceleration</h3>
Find acceleration by rearranging the found equation of total height.
Total Height = h
h = 5a(t₁)²

Using F = Ke
F = 39200×(25÷100) = 39200×0.25
F= 9800N
a. I've attached a plot of the surface. Each face is parameterized by
•
with
and
;
•
with
and
;
•
with
and
;
•
with
and
; and
•
with
and
.
b. Assuming you want outward flux, first compute the outward-facing normal vectors for each face.





Then integrate the dot product of <em>f</em> with each normal vector over the corresponding face.










c. You can get the total flux by summing all the fluxes found in part b; you end up with 42π - 56/3.
Alternatively, since <em>S</em> is closed, we can find the total flux by applying the divergence theorem.

where <em>R</em> is the interior of <em>S</em>. We have

The integral is easily computed in cylindrical coordinates:


as expected.