I think you would be using a topographic Map, So the answer should be A
Remember Newton's second law: F=ma
to get the force in newtons, mass should be in kg and acceleration in m/s^2
conveniently, we don't need to convert units
we just need to multiply the two to get the force
65* 0.3 = 19.5 kg m/s^2 or N
if significant digit is an issue, the least number if sig figs is 1 so the answer would be 20 N
Answer:

Explanation:
According to the free-body diagram of the system, we have:

So, we can solve for T from (1):

Replacing (3) in (2):

The electric force (
) is given by the Coulomb's law. Recall that the charge q is the same in both spheres:

According to pythagoras theorem, the distance of separation (r) of the spheres are given by:

Finally, we replace (5) in (4) and solving for q:

She misses. She should have accelerated faster in order to get to her target.
Answer:
Explanation:
Given a square side loop of length 10cm
L=10cm=0.1m
Then, Area=L²
Area=0.1²
Area=0.01m²
Given that, frequency=60Hz
And magnetic field B=0.8T
a. Flux Φ
Flux is given as
Φ=BA Sin(wt)
w=2πf
Φ=BA Sin(2πft)
Φ=0.8×0.01 Sin(2×π×60t)
Φ=0.008Sin(120πt) Weber
b. EMF in loop
Emf is given as
EMF= -N dΦ/dt
Where N is number of turns
Φ=0.008Sin(120πt)
dΦ/dt= 0.008×120Cos(120πt)
dΦ/dt= 0.96Cos(120πt)
Emf=-NdΦ/dt
Emf=-0.96NCos(120πt). Volts
c. Current induced for a resistance of 1ohms
From ohms law, V=iR
Therefore, Emf=iR
i=EMF/R
i=-0.96NCos(120πt) / 1
i=-0.96NCos(120πt) Ampere
d. Power delivered to the loop
Power is given as
P=IV
P=-0.96NCos(120πt)•-0.96NCos(120πt)
P=0.92N²Cos²(120πt) Watt
e. Torque
Torque is given as
τ=iL²B
τ=-0.96NCos(120πt)•0.1²×0.8
τ=-0.00768NCos(120πt) Nm