B. I think is the correct answer
Let the observer be 'd' distance away from the thunderstorm and let light take 't' time to reach the observer
Since the speed of sound and light remains constant in a particular medium, we can use
Speed = Distance/Time
For light,
3 x 10^8 = d/t
t = d/(3 x 10^8) -1
For sound,
339 = d/(t + 30) -2
Putting value from 1 in 2.
d = 10^4 m(approx)
Answer:
hub9hybygbgybgybgygybsbgydgbydxbgbyxdgbyxdyggdxygbyxdgybzgbydbgyzsbgydgbyzdgxbybgydzs
Explanation:
Answer:
38 N, 40.0° below the horizontal
Explanation:
Force exerted by an object equals mass times acceleration of that object: F = m ⨉ a. To use this formula, you need to use SI units: Newtons for force, kilograms for mass, and meters per second squared for acceleration.
Answer:
No.
Explanation:
We shall solve this problem by calculating the resolving power of eye for given wavelength
Resolving Power of eye = \frac{1.22\lambda }{D}
Where λ is wave length of light and D is diameter of eye.
λ is 600 nm and D is 3.5 mm . Put these values in the given formula
Resolving Power = \frac{1.22\times 600\times 10^{-9} }{3.5\times 10^{-3}}\\
=209.14 \times 10^{-6}radian
From the formula
Φ = \frac{L}{D}[/tex]
Where Ф is resolving power . If L be distance between two points that can be resolved at distance D. D is 6 km or 6000 m .
209.14 \times 10^{-6}=\frac{L}{6000}\\
L= 1.254 m
So minimum distance that can be resolved is 1.254 m.