Answer:
It travels 1414 feets.
Explanation:
Let's take the length the bullet travels <em>l </em>as the hypotenuse of a right triangle and the height it reaches one of its sides. Since we got the angle α at which it was fired and the height <em>h</em> it reached, we can calculate <em>l</em> using the <em>sin(α)</em> function:

Replacing:

Solving and roundin to the nearest foot:

Answer: The velocity at different marked time points are given as
t1 = -
t2 = +
t3 = +
t4 = -
t5 = 0
Explanation:
The slope of the tangent of the curve indicates the instantaneous velocity. So if the slope of the tangent is positive, that Is, the tangent makes a positive angle (above the horizontal axis) with the horizontal
axis, then the velocity at this point is positive, and if the slope of the tangent is negative, that is the tangent makes a negative angle with the horizontal axis (below the horizontal axis), then the velocity at this point is negative.
When the tangent of the line is parallel to the horizontal axis, the velocity is 0.
From the position-time graph attached, the sign on the instantaneous velocity for each time marked on the graph is given below
t1 = -
t2 = +
t3 = +
t4 = -
t5 = 0
QED!
Most earthquakes occur along or near the edges of the earth's lithospheric<span> plate. </span>
Here's the tool you need. You can't answer the question without this:
"1 watt"
means
"1 joule of energy, generated, used, or moved, every second".
So 60 watts = 60 joules per second
Total energy generated,
used, or moved = (power) x (time).
580 joules = (60 watts) x (time)
Divide each side
by (60 watts): Time = (580 joules) / (60 joules/sec)
= (9 and 2/3) seconds .