Momentum = mass x velocity
Before collision
Momentum 1 = 2 kg x 20 m /s = 40 kg x m/s
Momentum 2 = 3 kg x -10m/s = -30 kg x m/s
After collision
Momentum 1 = 2 kg x -5 m/s = -10 m/s
Momentum 2 = 3 kg x V2 = 3V2
Total momentum before = total momentum after
40 + -30 = -10 + 3V2
V2 = <span>6.67 m/s
Total kinetic energy before
</span><span>= (1/2) [ 2 kg * 20 m/s * 2 + 3 kg * ( -10 m/s) *2 ]
= 550 J
</span>
<span>Total kinetic energy after
</span>= (1/2) [ 2 kg * ( - 5 m/s) * 2 + 3 kg * 6.67 m/s *2 ]
= 91.73 J
Total kinetic energy lost during collision
=<span>550 J - 91.73 J
= 458.27 J</span>
Sour patch candy in the US after choclate
Answer:
As you said you already know, energy cannot be created or destroyed.
Explanation:
You cannot gain energy or lose energy, it can only be converted. So if you start on a 3m high hill and go down it, your potential energy is equal to mgh, and if you get to the bottom of the hill, your KE would be equal to your PE at the top, and when you start going up another hill again, the maximum height you can reach is 3m, because energy cannot be created or destroyed, and your mass and gravitational acceleration are the same, so therefore you can only reach the same height you started from due to the conservation of energy.
Answer:
Part a)
the tension force is equal to the weight of the crate
Part b)
tension force is more than the weight of the crate while accelerating upwards
tension force is less than the weight of crate if it is accelerating downwards
Explanation:
Part a)
When large crate is suspended at rest or moving with uniform speed then it is given as

here since speed is constant or it is at rest
so we will have


so the tension force is equal to the weight of the crate
Part b)
Now let say the crate is accelerating upwards
now we can say


so tension force is more than the weight of the crate
Now if the crate is accelerating downwards


so tension force is less than the weight of crate if it is accelerating downwards
The only correct statement on the list is choice-A./