Answer: reactants to this system,...
Explanation:
Answer:

Explanation:
<u>Displacement Vector</u>
Suppose an object is located at a position

and then moves at another position at

The displacement vector is directed from the first to the second position and can be found as

If the position is given as magnitude-angle data ( z , α), we can compute its rectangular components as


The question describes the situation where the initial point is the base of the mountain, where both components are zero

The final point is given as a 520 m distance and a 32-degree angle, so


The displacement is

It's velocity when it strikes the ground is. D. 232.9 kg.m/s<span>.
</span>
I hope this helps!!!
a. The speed of the pendulum when it reaches the bottom is 0.9 m/s.
b. The height reached by the pendulum is 0.038 m.
c. When the pendulum no longer swing at all, all the kinetic energy of the pendulum has been used to overcome frictional force.
<h3>Kinetic energy of the pendulum when it reaches bottom</h3>
K.E = 100%P.E - 18%P.E
where;
K.E(bottom) = 0.82P.E
K.E(bottom) = 0.82(mgh)
K.E(bottom) = 0.82(1 x 9.8 x 0.05) = 0.402 J
<h3>Speed of the pendulum</h3>
K.E = ¹/₂mv²
2K.E = mv²
v² = (2K.E)/m
v² = (2 x 0.402)/1
v² = 0.804
v = √0.804
v = 0.9 m/s
<h3>Final potential energy </h3>
P.E = 100%K.E - 7%K.E
P.E = 93%K.E
P.E = 0.93(0.402 J)
P.E = 0.374 J
<h3>Height reached by the pendulum</h3>
P.E = mgh
h = P.E/mg
h = (0.374)/(1 x 9.8)
h = 0.038 m
<h3>when the pendulum stops</h3>
When the pendulum no longer swing at all, all the kinetic energy of the pendulum has been used to overcome frictional force.
Thus, the speed of the pendulum when it reaches the bottom is 0.9 m/s.
The height reached by the pendulum is 0.038 m.
When the pendulum no longer swing at all, all the kinetic energy of the pendulum has been used to overcome frictional force.
Learn more about pendulum here: brainly.com/question/26449711
#SPJ1