Answer:
T = 480.2N
Explanation:
In order to find the required force, you take into account that the sum of forces must be equal to zero if the object has a constant speed.
The forces on the boxes are:
(1)
T: tension of the rope
M: mass of the boxes 0= 49kg
g: gravitational acceleration = 9.8m/s^2
The pulley is frictionless, then, you can assume that the tension of the rope T, is equal to the force that the woman makes.
By using the equation (1) you obtain:

The woman needs to pull the rope at 480.2N
Answer:
The height reached is 20m, The time taken to reach 20m is 2 seconds
Explanation:
Observing the equations of motion we can see that the following equation will be most helpful for this question.

We are given initial velocity, u
We know that the stone will stop at its maximum height, so final velocity, v
Acceleration, a
And we are looking for the displacement (height reached), s
Substitute the values we are given into the equation

Rearrange for s



s = -20 (The negative is just showing direction, it can be ignored for now)
The height reached is 20m
Use a different equation to find the time taken

Substitute in the values we have

Rearrange for t



t = 2s
The time taken to reach 20m is 2 seconds
Answer:
r₁/r₂ = 1/2 = 0.5
Explanation:
The resistance of a wire is given by the following formula:
R = ρL/A
where,
R = Resistance of wire
ρ = resistivity of the material of wire
L = Length of wire
A = Cross-sectional area of wire = πr²
r = radius of wire
Therefore,
R = ρL/πr²
<u>FOR WIRE A</u>:
R₁ = ρ₁L₁/πr₁² -------- equation 1
<u>FOR WIRE B</u>:
R₂ = ρ₂L₂/πr₂² -------- equation 2
It is given that resistance of wire A is four times greater than the resistance of wire B.
R₁ = 4 R₂
using values from equation 1 and equation 2:
ρ₁L₁/πr₁² = 4ρ₂L₂/πr₂²
since, the material and length of both wires are same.
ρ₁ = ρ₂ = ρ
L₁ = L₂ = L
Therefore,
ρL/πr₁² = 4ρL/πr₂²
1/r₁² = 4/r₂²
r₁²/r₂² = 1/4
taking square root on both sides:
<u>r₁/r₂ = 1/2 = 0.5</u>
Answer:
160 W
Explanation:
Power is the ratio of work to time:
(1600 J)/(10 s) = 160 J/s = 160 W