Answer:
B)
Explanation:
Negative (-) charge M will not move towards negative (-) charge K because, same charges will not attract each other in the given case
Negative (-) charge at the M tends to move towards positive (+) charge L in the direction of B) because opposite charges attract each other.
Answer:
λ = 162 10⁻⁷ m
Explanation:
Bohr's model for the hydrogen atom gives energy by the equation
= - k²e² / 2m (1 / n²)
Where k is the Coulomb constant, e and m the charge and mass of the electron respectively and n is an integer
The Planck equation
E = h f
The speed of light is
c = λ f
E = h c /λ
For a transition between two states we have
- = - k²e² / 2m (1 / ² -1 / ²)
h c / λ = -k² e² / 2m (1 / ² - 1/ ²)
1 / λ = (- k² e² / 2m h c) (1 / ² - 1/²)
The Rydberg constant with a value of 1,097 107 m-1 is the result of the constant in parentheses
Let's calculate the emission of the transition
1 /λ = 1.097 10⁷ (1/10² - 1/8²)
1 / λ = 1.097 10⁷ (0.01 - 0.015625)
1 /λ = 0.006170625 10⁷
λ = 162 10⁻⁷ m
Answer:
average speed
Explanation:
The directions were different, so the velocities could not be the same.
However, the magnitude of the velocity (speed) was 56/2 = 28 m/s for the first car, and 84/3 = 28 m/s for the second car. These<em> average speeds are the same</em>.
Answer:
You didnt post a picture im not sure how im going to answer that :/