Your answer is A my friend as the atomic number of an atom is determined by the number of protons
Answer:
15.3 %
Explanation:
Step 1: Given data
- Mass of the sample (ms): 230 g
- Mass of carbon (mC); 136.6 g
- Mass of hydrogen (mH): 26.4 g
- Mass of nitrogen (mN): 31.8 g
Step 2: Calculate the mass of oxygen (mO)
The mass of the sample is equal to the sum of the masses of all the elements.
ms = mC + mH + mN + mO
mO = ms - mC - mH - mN
mO = 230 g - 136.6 g - 26.4 g - 31.8 g
mO = 35.2 g
Step 3: Calculate the mass percent of oxygen
%O = (mO / ms) × 100% = (35.2 g / 230 g) × 100% = 15.3 %
The mass of ethanol present in the vapor is 8.8×10⁻²g. when liquid and vapor ethanol at equilibrium.
The volume of the bottle = 4.7 L
Mass of ethanol = 0.33 g
Temperature (T1) = -11 oC = 273-11 = 262 K
P1 = 6.65 torr
Now we will calculate the mole by applying the ideal gas equation:-
PV = nRT
Or, n = PV/RT
Where P is the pressure
T is the temperature
R is the gas constant = 0.0821 L atm mol-1K-1
V is the volume
Substituting the values of P, V, T, and R the mole of ethanol is calculated as:-
= 0.001913 mol C2H6
Conversion of the mole to gm
Molar mass of ethanol (M) = 46.07 g/mol
Mass of C2H6O =0.001913 mol C2H6O 46.07 g/mol = 0.088 = 8.8×10⁻²g.
Hence, the mass of ethanol present in the vapor is found to be 8.8×10⁻²g.
Learn more about mole here:-brainly.com/question/15374113
#SPJ4
Answer:
nickel
It also tells you the number of electrons that the element has in its outside shells. If the atomic number of nickel is 28 then every atom of nickel has 28 protons in its nucleus and 28 electrons outside the nucleus.
Explanation: