Answer:
If freshwater consumption was greater than freshwater renewal.
Explanation:
Similar to another Brainly answer :O
Answer:
true I think
Explanation:
sorry if I'm wrong, have a good day:)
At point E
- the kinetic energy of the rollercoaster is small compared to the potential energy
- the potential energy is greater than the kinetic energy
- the total energy is a mixture of potential and kinetic energy
<h3>What is the energy of the roller coaster at point E?</h3>
The energy of a roller coaster could either be potential energy, kinetic energy or a combination of both potential and kinetic energy.
Using analogies, the energy of the roller coaster at point E can be compared to a falling fruit from a tree which falls onto a pavement and is the rolling towards the floor. Point E can be compared to the midpoint of the fall of the fruit.
At point E
- the kinetic energy of the rollercoaster is small compared to the potential energy
- the potential energy is greater than the kinetic energy
- the total energy is a mixture of potential and kinetic energy
In conclusion, the energy of the rollercoaster at E is both Kinetic and potential energy,
Learn more about potential and kinetic energy at: brainly.com/question/18963960
#SPJ1
Answer:bill 5 m/s. Jack:10 m/s
Explanation:
Cuz I took it
Answer:
<em>1.228 x </em>
<em> mm </em>
<em></em>
Explanation:
diameter of aluminium bar D = 40 mm
diameter of hole d = 30 mm
compressive Load F = 180 kN = 180 x
N
modulus of elasticity E = 85 GN/m^2 = 85 x
Pa
length of bar L = 600 mm
length of hole = 100 mm
true length of bar = 600 - 100 = 500 mm
area of the bar A =
=
= 1256.8 mm^2
area of hole a =
=
= 549.85 mm^2
Total contraction of the bar =
total contraction =
==>
= <em>1.228 x </em>
<em> mm </em>