Answer: 4m
Explanation:
Since the angle of incidence of a plane mirror can be anything from 0 to 90°
Assuming that the place is a perfectly square 4×4m room
The incident ray would be 45° for the choir(object) at a 4m distance, this is still within the range of values.
We do not forget also, that the focal length of a plane mirror is infinity, the organist would in fact see farther than 4m if need be. And wider
Complete Question
The complete question is shown on the first uploaded image
Answer:
a
The torque produced by the pile of rocks is
b
The distance of the single for equilibrium to occur is
Explanation:
From the question we are told that
The mass of the left rock is 
The mass of the rock on the right 
The distance from fulcrum to the center of the pile of rocks is 
Generally the torque produced by the pile of rock is mathematically represented as

Substituting values
Generally we can mathematically evaluated the distance of the the single rock that would put the system in equilibrium as follows
The torque due to the single rock is

At equilibrium the both torque are equal

Making
the subject of the formula

Substituting values
Answer:
The centripetal acceleration of the stone is 5 m/s²
Explanation:
The length of the string to which the stone is attached, r = 1 m
The speed with which the string is rotated, v = 5 m/s
The centripetal acceleration,
, is given as follows;

Therefore, the centripetal acceleration of the stone found as follows;

The centripetal acceleration of the stone,
= 5 m/s².
Spectroscopy — the use of light from a distant object to work out the object is made of — could be the single-most powerful tool astronomers use, says Professor Fred Watson from the Australian Astronomical Observatory. ... "It lets you see the chemicals being absorbed or emitted by the light source.
The incorrect statement about electromagnetic waves is C. induction of electric fields by changing magnetic fields only occurs if a conducting material is present.
Electromagnetic waves do not rely on any medium for propagation, which means that the generation of fields is irrespective of the presence of a conducting material.