Answer:
Part a)

Part b)

Explanation:
Part a)
As we know that initially the two blocks are connected by a spring and initially stretched by some amount
Since the two blocks are at rest initially so its initial momentum is zero
since there is no external force on this system so final momentum is also zero

now for initial position the speed is zero

now we have

Part b)
now for ratio of kinetic energy we know that the relation between kinetic energy and momentum is given as

now for the ratio of energy we have

since we know that momentum of two blocks are equal in magnitude so we have
now we have

Answer:
First, the image moves in and out of focus too quickly, so that it is difficult to precisely adjust the focus. Second, you run the risk of crashing the objective into the slide. Use the coarse focus only with the 4x low power objective. You can use the fine focus knob with all objectives.
Explanation:
Kinetic Energy = (1/2) mv^2.
m = 57.7 g = 57.7/1000 = 0.00577 kg.
v = 325 m/s.
E = 0.5 * 0.00577 * 325^ 2. Use your calculator.
E = 304.728125 J.
That's the kinetic energy.
Answer: 15 cm
Explanation:
According to the Lens Equation we have the following:
(1)
Where:
is the focal length
is the distance between the candle (the object) and the lens
is the distance between the image and the lens
Isolating
:
(2)
Solving:
(3)
Finally:
This is where the image is located