Answer:

Explanation:
*Assume the parallel disks have equal diameters.
Given the electric strength as
transferring
electrons, the disk's Area can be calculated using the formula:

#We now calculate the disks diameter:

Hence, the diameter of the disks is 
Answer:

Explanation:
v = Speed of electron =
(generally the order of magnitude is 6)
m = Mass of electron = 
Work done would be done by

The work required to stop the electron is 
This is unclear. What are the objects? Is it a balloon? A rubber ball?
The main morphological types of galaxies are elliptical, spiral, and irregular.
Based on their morphology , galaxies have been classified into 3 types namely elliptical, spiral, and irregular.
These galaxies have various sizes and shapes ranging from dwarf galaxies to giant galaxies.
Elliptical Galaxy:
- The shape of it is generally circular
- These are the largest among all the types of galaxies because according to astronomers, it is formed by the merger of other small galaxies.
- Their rotational pattern is symmetric.
Spiral Galaxy:
- A spiral galaxy consists of a bright nucleus surrounded by a thin outer disk forming a spiral shape.
- This type of galaxy is the most common in our universe.
- It is divided into three classes: Spiral a, Spiral b, and Spiral c.
- Their rotational pattern has circular symmetry.
Irregular Galaxy:
- These types of galaxies have no central nucleus and irregular arms which are bluish.
- They don’t have any rotational symmetry.
To know more about "galaxies", refer to the following link:
brainly.com/question/24836631?referrer=searchResults
#SPJ4