Answer:
7 mm per year
Explanation:
It is given that :
The Pacific plate is moving towards north at = 29 mm per year
The Pacific plate is moving towards west at = 20 mm per year
We have to calculate the total relative motion towards the northwest.
So we have to find the resultant of the two motions.
Since the two movements are perpendicular, therefore the angle between the two motions is 90 degree.
Therefore, finding their resultant,


R = 7
Therefore, total relative motion towards the northwest is 7 mm per year.
Answer:
Explanation:
Before it hits the ground:
The initial potential energy = the final potential energy + the kinetic energy
mgH = mgh + 1/2 mv²
gH = gh + 1/2 v²
v = √(2g (H - h))
v = √(2 * 9.81 m/s² * (0.42 m - 0.21 m))
v ≈ 2.0 m/s
When it hits the ground:
Initial potential energy = final kinetic energy
mgH = 1/2 mv²
v = √(2gH)
v = √(2 * 9.81 m/s² * 0.42 m)
v ≈ 2.9 m/s
Using a kinematic equation to check our answer:
v² = v₀² + 2a(x - x₀)
v² = (0 m/s)² + 2(9.8 m/s²)(0.42 m)
v ≈ 2.9 m/s
Refer to the attached figure. Xp may not be between the particles but the reasoning is the same nonetheless.
At xp the electric field is the sum of both electric fields, remember that at a coordinate x for a particle placed at x' we have the electric field of a point charge (all of this on the x-axis of course):

Now At xp we have:


Which is a second order equation, using the quadratic formula to solve for xp would give us:

or

Plug the relevant values to get both answers.
Now, let's comment on which of those answers is the right answer. It happens that
BOTH are correct. This is simply explained by considring the following.
Let's place a possitive test charge on the system This charge feels a repulsive force due to q1 but an attractive force due to q2, if we place the charge somewhere to the left of q2 the attractive force of q2 will cancel the repulsive force of q1, this translates to a zero electric field at this x coordinate. The same could happen if we place the test charge at some point to the right of q1, hence we can have two possible locations in which the electric field is zero. The second image shows two possible locations for xp.
Einstein's equations showed that matter could be converted into energy; and vice-versa
☺☺☺☺
Answer: An jack makes changing a tire easier because it lifts up the car to get the tire off of the ground.
Explanation: