I think the answer would be C
Hqisgshsjsvg udyfudueuduutuufududuydd
Answer:
See explanation below
Explanation:
If we are talking about the kinetic energy of the cylinder of oxygen:
The kinetic energy possessed by any object is given by

where
m is the mass of the object
v is its speed
In this case, we have one cylinder carried by a car and one standing on a platform: this means that the speed of the cylinder carried by the car will be different from zero (and so also its kinetic energy will be different from zer), while the speed of the cylinder standing on the platform will be zero (and so its kinetic energy also zero). Therefore, the kinetic energy of the cylinder carried by the car will be larger than that standing on a platform.
Instead, if we are talking about the kinetic energy due to the random motion of the molecules of oxygen inside the cylinder:
The kinetic energy of the molecules in a gas is directly proportional to the absolute temperature of the gas:

where k is called Boltzmann constant and T is the absolute temperature of the gas. Therefore, we see that K does not depend on whether the gas is in motion or not, but only on its temperature - therefore, in this case there is no difference between the kinetic energy of the cylinder carried by the car and that standing on the platform (assuming they are at the same temperature)
Explanation:
Given that,
Mass of the rock climber, m = 90 kg
Original length of the rock, L = 16 m
Diameter of the rope, d = 7.8 mm
Stretched length of the rope, 
(a) The change in length per unit original length is called strain. So,

(b) The force acting per unit area is called stress.

(c) The ratio of stress to the strain is called Young's modulus. So,

Hence, this is the required solution.
The 1st quadrant (0-90 degrees) is the only quadrant where none of the components are negative, so that means that any angle larger than 90 degrees will result in one of the components being negative.