Chattanooga - Chatype, London - Johnston, Berlin - BMF Change, Milan - Milano City, Eindhoven - Eindhoven, Stockholm - Stockholm Type, Minneapolis, and St. Paul - Twin.
Answer:
4 A
Explanation:
The relationship between current, voltage and resistance in a circuit is given by Ohm's law:
where
V is the voltage
R is the resistance
I is the current
The equation can also be rewritten as
from which we see that the current is inversely proportional to the resistance, R.
In this problem, the initial current is I = 8 A. Then the resistance is doubled:
R ' = 2R
So the new current is
so the current is halved.
12.00 min = 0.2 hr
8.00 min = 0.15 hr
Total distance:
(10.0 km/hr) (0.2 hr) + (15.0 km/hr) (0.15 hr) + (20.0 km/hr) (0.2 hr)
= 8.25 km
Average speed:
(10.0 km/hr + 15.0 km/hr + 20.0 km/hr) / 3
= 15 km/hr
Change in position:
(10.0 km/hr) (0.2 hr) + (15.0 km/hr) (0.15 hr) - (20.0 km/hr) (0.2 hr)
= 0.25 km
Average velocity:
(10.0 km/hr + 15.0 km/hr - 20.0 km/hr) / 3
≈ 1.67 m/s
Answer:
a) p = 4.96 10⁻¹⁹ kg m / s
, b) p = 35 .18 10⁻¹⁹ kg m / s
,
c) p_correst / p_approximate = 7.09
Explanation:
a) The moment is defined in classical mechanics as
p = m v
Let's calculate its value
p = 1.67 10⁻²⁷ 0.99 3. 10⁸
p = 4.96 10⁻¹⁹ kg m / s
b) in special relativity the moment is defined as
p = m v / √(1 –v² / c²)
Let's calculate
p = 1.67 10⁻²⁷ 0.99 10⁸/ √(1- 0.99²)
p = 4.96 10⁻¹⁹ / 0.141
p = 35 .18 10⁻¹⁹ kg m / s
c) the relationship between the two values is
p_correst / p_approximate = 35.18 / 4.96
p_correst / p_approximate = 7.09