Answer:
Good for Megan but what’s the question?
Step-by-step explanation:
Answer:

Step-by-step explanation:
x is the number of years. y is the population after x years.
Each year, the population decreases by 22%, since 100% - 22% = 78%, and 78% = 0.78, each year, the population is 0.78 of the previous year's population.
year zero: y = 300
year 1: y = 300 * 0.78 = 300 * (0.78)^1
year 2: y = (300 * 0.78) * 0.78 = 300 * (0.78)^2
year 3: y = ((300 * 0.78) * 0.78) * 0.78 = 300 * (0.78)^3
year x: y = 300(0.78)^x
<h2>Question #22 Answer</h2>
B. 2 in.
<h3>Explanation:</h3>

Cross out the common factor

________________________________________________________
<h2>Question #23 Answer (Picture attached)</h2>
D. proportional, equal
<h3>Explanation:</h3>

Δ
Δ × 



Actually, the area of the square is 49 cm^2.
The length of one side is sqrt(49 cm^2) = 7 cm (answer)
The things you can apply to complete this job is workers and time. The job being accomplished is painted walls. This problem defines two jobs. The rate for each of the jobs will be the same. The first job rate is: R=(7 wkr)•(42 min)/(6 walls)R= 49 wkr-min/walls or 49 worker-minutes per wall. This means one worker can paint one wall in 49 minutes. If you think about this job if 7 workers take 42 minutes to do 6 walls it will only take them 7 minutes to do one wall. And it will take one person 7 times as long to do a job as 7 people working together. This first job rate equals the second job rate R=(8 wkr)•(t )/(8 walls)R=1 t wkr/wall where t is the time to do the second job. Setting the two rates equal to each other and solving for t. t=49 minutes It makes sense if one worker can paint one wall in 49 minutes then 8 workers can paint 8 walls in the same time.