Explanation:
<h2> Answers</h2>
1.Electromagnetic waves
2.Electromagnetic radiation
3.Electromagneticwaves
Answer:2800000j
Explanation:
For us to know the kinetic energy of the vehicle,
Where m is the mass
And v is the velocity
Then, K.E=1/2mv^2
While, K.E=1/2×3500×40^2
Therefore, our answer will now be
K.E=2800000j
Answer:
Subtract the kinetic energy at the bottom from the potential energy loss. The remainder becomes frictional heat.
Potential energy loss:
M g H = 21.7*9.81*3.5 = 745.1 J
Kinetic energy at bottom of slide:
= (1/2) M v^2 = 52.5 J
The net force acting on the airplane is 25N.
Forces acting on the paper airplane when it is in the air:
- The forward force generated by the engine, propeller, or rotor is called thrust. It resists or defeats the drag force. It operates generally perpendicular to the longitudinal axis. However, as will be discussed later, this is not always the case.
- Drag is an airflow disruption generated by the wing, rotor, fuselage, and other projecting surfaces that causes a backward, decelerating force. Drag acts backward and perpendicular to the relative wind, opposing thrust.
- Weight is the total load carried by airplane, including the weight of the crew, fuel, and any cargo or baggage. Due to the influence of gravity, weight pulls the airplane downward.
- Lift—acts perpendicular to the flight path through the center of lift and opposes the weight's downward force. It is produced by the air's dynamic influence on the airfoil.
Given.
Weight of the paper airplane, F1 = 16N
The force of air resistance, F2 = 9N
Net force = F1 + F2
Net force = 25N
Thus, the net force acting on the airplane is 25N.
Learn more about the net force here:
brainly.com/question/18109210
#SPJ1
Answer:
0.65 kg*m/s and 0.165 kg*m/s
Explanation:
Step one:
given data
mass m= 0.5kg
initial velolcity u=1.3m/s
final velocity v= 0.97m/s
Required
The change in momentum
Step two:
We know that the expression for impulse is given as
Ft= mv
Ft= 0.5*1.3
Ft= 0.65 kg*m/s
The expression for the change in momentum is given as
P= mΔv
substitute
Pt= 0.5*(1.3-0.97)
Pt= 0.5*0.33
Pt=0.165 kg*m/s