After x seconds, an object will fall

where a is acceleration due to gravity and t is time
so when t=3.3
the distance it will fall is

=53.361m
it will fal 53.361 meters
Radio waves, gamma-rays, visible light, and all the other parts of the electromagnetic spectrum are electromagnetic radiation. Electromagnetic radiation can be described in terms of a stream of mass-less particles, ...
The electromagnetic spectrum is a map of all the types of light that we can identify. It separates all the types of light by wavelength because that directly relates to how energetic the wave is. More energetic wave
For most of history, visible light was the only known part of the electromagnetic spectrum. The ancient Greeks recognized that light traveled in straight lines and studied some of its properties, including reflection
2.c
3.b
1.a
......................................................................................................................................................
Titty milk I think because it taste amazing so you can go 21km/h
Answer:
Option C. 5,000 kg m/s
Explanation:
<u>Linear Momentum on a System of Particles
</u>
Is defined as the sum of the momenta of each particles in a determined moment. The individual momentum is the product of the mass of the particle by its speed
P=mv
The question refers to an 100 kg object traveling at 50 m/s who collides with another object of 50 kg object initially at rest. We compute the moments of each object


The sum of the momenta of both objects prior to the collision is

