The vertical movement of the projectile is described by:
y = H - gt² / 2
When the cannonball is on the ground, y= 0 so:
0 = H - gt² /2
Solving for t:

The horizontally movement of the projectile is described by:
x = v₀t
Solving for v₀:
v₀ = x/t
v₀ = 175 m / 2.8 s
v₀ = 61.5 m/s
Explanation:
The water molecules begins to leave their fixed position and begins to move as the temperature increases.
When ice melts, it undergoes a state change from solid to liquid and with increasing temperature becomes a gas.
- The basis for this is the increasing movement of the molecules of the water as it transitions from one phase to another.
- In the ice, the molecules are locked and fixed in the lattice
- As the temperature increases, the average kinetic energy of the particles rises.
- This makes the structure of the ice to collapse and forms liquids.
- By the virtue of this, they flow and move over one another
- With increasing temperature, the bonds are broken and vapor forms
Answer:

Explanation:
We have given initial length of the steel guitar l = 1 m
Cross sectional area 
Young's modulus 
Force F = 1500 N
So stress 
We know that young's modulus 
So 

Now strain 


Answer:
The answer is given below
Explanation:
u is the initial velocity, v is the final velocity. Given that:

a)
The final velocity of cart 1 after collision is given as:

The final velocity of cart 2 after collision is given as:

b) Using the law of conservation of energy:

Explanation:
From Newton's second law:
F = ma
Given that m = 4 kg and a = 8 m/s²:
F = (4 kg) (8 m/s²)
F = 32 N
If m is reduced to 1 kg and F stays at 32 N:
32 N = (1 kg) a
a = 32 m/s²
So the acceleration increases by a factor of 4.