Answer: A... Thermal energy from the ice is transferred to the air.
Explanation: because I just know.
Answer:
maximum speed of the bananas is 18.8183 m/s
Explanation:
Given data
amplitude A = 23.195 cm
spring constant K = 15.2676 N/m
mass of the bananas m = 56.9816 kg
to find out
maximum speed of the bananas
solution
we know that radial oscillation frequency formula that is = √(K/A)
radial oscillation frequency = √(15.2676/23.195)
radial oscillation frequency is 0.8113125 rad/s
so maximum speed of the bananas = radial oscillation frequency × amplitude
maximum speed of the bananas = 0.8113125 × 23.195
maximum speed of the bananas is 18.8183 m/s
Answer:
There is absolutely No relationship between the weight of an object (which is constant) and the frictional force. If a block is sliding on a surface, that surface will be exerting a force on the block. That force can be resolved into a component parallel to the surface (which we call the frictional component), and a component perpendicular to the surface (called the normal component). For many situations, we find experimentally that the frictional component is approximately proportional to the normal component. The frictional component divided by the normal component is defined to be a quantity called the coefficient of kinetic or sliding friction. The coefficient of kinetic friction obviously depends on the nature of the surfaces involved. The normal component on an object can be decreased if you pull in the direction of the normal component (the weight does not change). However pulling this way on the object not only decreases the normal component, but it also decreases the frictional component since they are proportional. This is why it is easier to slide something if you pull up on it while you push it. If you push down, the normal and frictional components increase so it is harder to slide the object. The weight of an object is the downward force exerted by Earth’s gravity on that object, and it does not change no matter how you push or pull on the object.
The answer is A) 1000 J
According to the law of conservation of energy, the total energy before an action is always equal to the total energy after the action.
So that is, the total energy is 8000J found as potential energy, 7000J has transformed into kinetic energy, then the thermal energy should be the remaining 1000J.
Hope this helps.