X^2 + y^2 - 2x + 8y - 47 = 0
x^2 + y^2 - 2x + 8y = 47
(x^2 - 2x) + (y^2 + 8y) = 47
(x^2 - 2(1)x) + (y^2 + 2(4)y) = 47
(x^2 - 2(1)x + 1^2) + (y^2 + 2(4)y + 4^2) = 47 + 1^2 + 4^2
(x - 1)^2 + (y + 4)^2 = 64 = 8^2
r=8
Answer:
145
Step-by-step explanation:
180-137=43
43+102=145
Answer:
6 is the answer of your question
Answer:
The integrals was calculated.
Step-by-step explanation:
We calculate integrals, and we get:
1) ∫ x^4 ln(x) dx=\frac{x^5 · ln(x)}{5} - \frac{x^5}{25}
2) ∫ arcsin(y) dy= y arcsin(y)+\sqrt{1-y²}
3) ∫ e^{-θ} cos(3θ) dθ = \frac{e^{-θ} ( 3sin(3θ)-cos(3θ) )}{10}
4) \int\limits^1_0 {x^3 · \sqrt{4+x^2} } \, dx = \frac{x²(x²+4)^{3/2}}{5} - \frac{8(x²+4)^{3/2}}{15} = \frac{64}{15} - \frac{5^{3/2}}{3}
5) \int\limits^{π/8}_0 {cos^4 (2x) } \, dx =\frac{sin(8x} + 8sin(4x)+24x}{6}=
=\frac{3π+8}{64}
6) ∫ sin^3 (x) dx = \frac{cos^3 (x)}{3} - cos x
7) ∫ sec^4 (x) tan^3 (x) dx = \frac{tan^6(x)}{6} + \frac{tan^4(x)}{4}
8) ∫ tan^5 (x) sec(x) dx = \frac{sec^5 (x)}{5} -\frac{2sec^3 (x)}{3}+ sec x