Each element absorbs light at specific wavelengths unique to that atom. When astronomers look at an object's spectrum, they can determine its composition based on these wavelengths. The most common method astronomers use to determine the composition of stars, planets, and other objects is spectroscopy.
hope this helps you! :-)
Answer:
Explanation:
Unclear question.
I infer you want a clear rendering, which reads;
A 258.4 g sample of ethanol (C2H5OH) was burned in a calorimetric pump using a Dewar glass. As a consequence, the water temperature rose to 4.20 ° C.
If the heat capacity of the water and the surrounding glass was 10.4 kJ / ° C, calculate the heat of combustion of one mole of ethanol.
Urea is highly soluble in water. When it is allowed to dissolve in water in the presence of heat, it will yield ammonia and carbon dioxide. The reaction is shown below:
<span>NH2-CO-NH2 + H2O </span>⇒ 2 NH3 + CO2
As you can observe in the stoichiometric equations, 1 molecule of water can dissolve with 1 mole of urea.
Answer:
for given question is 2.79 and
is 0.52
{i- vant hoff’s constant ; Kb- constant ; m molarity }
M = no. of moles of the solute present in one kg of solution
Let the weight of amount of solute be “w” and its molecular mass be “M”
Let the mass of the solvent in the given question be “x”




D.) There are 24 atoms in total in that compound.....