Answer:
D. All of these.
Explanation:
For an equation to be balanced the number of atoms of each kind in the reactants and the products should be the same.
Then from this equation, CO is a product.
Last, two carbon atoms undergo reaction with the oxygen molecule for complete reaction to occur. Each atom combines with one oxygen atom.
- Separated by an actual physical barrier
<span>- Geographic isolation can be overcome in some circumstances but the majority of the population will be isolated and therefore will diverge into different species
</span>
did this help if it did leave a thanks
Answer: Ti is the reducing agent because it changes from 0 to +4 oxidation state.
Explanation:
- Firstly, we need to identify the reducing agent and the oxidizing agent.
- The reducing agent: is the agent that has been oxidized via losing electrons.
- The oxidizing agent: is the agent that has been reduced via gaining electrons.
- Here, Ti losses 4 electrons and its oxidation state is changed from 0 to +4 and Cl₂ gains one electron and its oxidation state is changed from 0 to -1.
- So, Ti is the reducing agent because its oxidation state changes from 0 to +4.
- Cl₂ is the oxidizing agent because its oxidation state changes from 0 to -1.
- Thus, The right answer is Ti is the reducing agent because it changes from 0 to +4 oxidation state.
Energy transfer is not an efficient process.
Explanation:
There is less amount of energy in the top of the energy pyramid than at the bottom because energy transfer is not an efficient process. During the process of energy transferring, some amount is lost and some are converted to other forms of energy.
- The sun is the ultimate source of energy for all life in the solar system.
- When autotrophs takes this energy, they produce food from it.
- They use light energy from the sun to produce chemical energy in food.
- Even this conversion process waste precious amount of energy.
- As one goes up the pyramid, more energy is lost during the process of converting from one form to another.
Learn more:
laws of thermodynamics brainly.com/question/11769517
#learnwithBrainly
Assuming the kind of vibration you are talking about is the kind where you stretch the rubber band between two points and then "twang" it, then the answer is fairly complex. What happens when you cause the vibrations to start is you make something called a "standing wave". In a standing wave, each particle in the rubber band has a certain amount of energy which causes it to move backwards and forwards, the particles with more energy have a larger "amplitude" (how much they move), and of course the particles with less energy have a smaller amplitude. Now a standing wave has two main components: The amplitude, and the frequency. The amplitude of the whole wave refers to the largest amplitude any particles has. The frequency refers to how often it takes for one of the particles to move between the two furthest away points it can be.
To compare rubber bands, you must remember to keep certain things constant. If you're looking at their vibrations, the amount of energy you use to "twang" the rubber band should be the same each time you twang it (which is the same as applying the same force each time you twang it).
A larger rubber band has more area over which to spread the energy, as well as it has more mass for the energy to move, so the vibrations will have smaller amplitudes, and smaller frequencies, overall vibrating less and with smaller vibrations.