Answer:
as the products of that reaction
Explanation:
Answer:
Mn (s) + NiCl2 (aq) → MnCl2 (aq) + Ni
Explanation:
The order of displacement of metals from aqueous solution by another metal is defined by the activity series of metals.
The activity series arranges metals in order of reactivity and increasing electrode potentials. The less negative the electrode potential of a metal is, the less reactive it is and the lower it is found in the activity series.
Nickel has a less negative electrode potential than manganese hence it is displaced from an aqueous solution of its salt by manganese spontaneously.
Answer:
It helps the body remove heat through sweating.
Explanation:
When the weather is hot, the body tries to keep cool by sweating. The high specific heat capacity means that the body doesn't have to lose much water to stay cool.
The high specific heat capacity of water doesn’t heat the body, but it slows down the rate of heat loss when the weather is cool.
B is wrong. The body uses glucose, not water, as an energy source.
C is wrong. The high specific heat capacity of water is not connected with the body's ability to store it.
D is wrong. The high specific heat capacity of water doesn't heat the body, but it slows the rate at which it cools.
Answer:
When the excited electron fall back to the lower energy levels the energy is released in the form of radiations.The characteristics bright colors are due to the these emitted radiations. These emitted radiations can be seen if they are fall in the visible region of spectrum
Explanation:
The electron is jumped into higher level and back into lower level by absorbing and releasing the energy.
The process is called excitation and de-excitation.
Excitation:
When the energy is provided to the atom the electrons by absorbing the energy jump to the higher energy levels. This process is called excitation. The amount of energy absorbed by the electron is exactly equal to the energy difference of orbits. For example if electron jumped from K to L it must absorbed the energy which is equal the energy difference of these two level. The excited electron thus move back to lower energy level which is K by releasing the energy because electron can not stay longer in higher energy level and comes to ground state.
De-excitation:
When the excited electron fall back to the lower energy levels the energy is released in the form of radiations. this energy is exactly equal to the energy difference between the orbits. The characteristics bright colors are due to the these emitted radiations. These emitted radiations can be seen if they are fall in the visible region of spectrum