FeBr₃ ⇒ limiting reactant
mol NaBr = 1.428
<h3>Further explanation</h3>
Reaction
2FeBr₃ + 3Na₂S → Fe₂S₃ + 6NaBr
Limiting reactant⇒ smaller ratio (mol divide by coefficient reaction)
211 g of Iron (III) bromide(MW=295,56 g/mol), so mol FeBr₃ :
186 g of Sodium sulfide(MW=78,0452 g/mol), so mol Na₂S :
Coefficient ratio from the equation FeBr₃ : Na₂S = 2 : 3, so mol ratio :
So FeBr₃ as a limiting reactant(smaller ratio)
mol NaBr based on limiting reactant (FeBr₃) :
Yo sup??
we can solve this problem by applying Newton's 2nd law
F*t=Δp
p=momentum
pi=mu=1500*30
pf=mv=m*0=0
Therefore
F*3=1500*30
F=15000 N
Hope this helps.
I think the subatomic particles that are paired with each of their corresponding name would be :
1. X , proton and z, electron
hope this helps
Answer:
Terms in this set (13)
Hydroxide. OH.
Nitrate. NO3.
Ammonium. NH4.
Bicarbonate/Hydrogen Carbonate. HCO3.
Bisulphate. HSO4.
Chlorate. ClO3.
<h2>hope it's correct</h2>
The characteristic bright-line spectrum of an element is produced when its electrons return to lower energy levels To be in the ground state all electrons must be in their lowest energy state; all excited atoms must lose energy. The lost energy appears in the form of light. Hope this helped :)