Answer:

Explanation:
We can use the following SUVAT equation to solve the problem:

where
v = 0 is the final velocity of the car
u = 24 m/s is the initial velocity
a is the acceleration
d = 196 m is the displacement of the car before coming to a stop
Solving the equation for a, we find the acceleration:

Answer:
Newton's First Law of Motion applies here.
Explanation:
Before crashing into the fence, Amy was moving at a certain speed on her bike. As, she crashed her bike into the fence, the collision stopped the bike suddenly. But, Amy had the same speed due to inertia of her body. Due tot his speed Amy did not stop and she was thrown over the fence onto the lawn. So, the force of inertia of Amy's body caused her to be overthrown in this case. We study about inertia in Newton's First Law of Motion, which is also known as Law of Inertia.
<u>Newton's First Law of Motion applies here.</u>
Answer:
When the ejected air is moving in the downward direction then the thrust force acts in the upward direction, due to reversal thrust, the jets can take off vertically without needing a runway this way.
Explanation:
Newton’s third law motion states that for every action there will be an equal and opposite reaction.
Thrust reversal is also known as reverse thrust. It acts opposite to the motion of the aircraft by providing the deceleration.
Commercial aircraft moves the ejected air in the forward direction means that the thrust will acts opposite to the motion of the aircraft that is backward direction due to thrust reversal. This thrust force might be used to decelerate the craft.
Uses of thrust reversal in practice:
When the ejected air is moving forward direction then the thrust force moving backward direction due to reversal thrust the speed of the craft slows down.
When the ejected air is moving in the downward direction then the thrust force acts in the upward direction, due to reversal thrust, the jets can take off vertically without needing a runway this way.