Answer:
Option (e)
Explanation:
A = 45 cm^2 = 0.0045 m^2, d = 0.080 mm = 0.080 x 10^-3 m,
Energy density = 100 J/m
Let Q be the charge on the plates.
Energy density = 1/2 x ε0 x E^2
100 = 0.5 x 8.854 x 10^-12 x E^2
E = 4.75 x 10^6 V/m
V = E x d
V = 4.75 x 10^6 x 0.080 x 10^-3 = 380.22 V
C = ε0 A / d
C = 8.854 x 10^-12 x 45 x 10^-4 / (0.080 x 10^-3) = 4.98 x 10^-10 F
Q = C x V = 4.98 x 10^-10 x 380.22 = 1.9 x 10^-7 C
Q = 190 nC
The answer would be, "1/560 seconds".
Explanation:
Hydraulic systems use the pump to push hydraulic fluid through the system to create fluid power. The fluid passes through the valves and flows to the cylinder where the hydraulic energy converts back into mechanical energy. The valves help to direct the flow of the liquid and relieve pressure when needed
The total flux through the cylinder is zero.
In fact, the electric flux through a surface (for a uniform electric field) is given by:

where
E is the intensity of the electric field
A is the surface
is the angle between the direction of E and the perpendicular to the surface, whose direction is always outwards of the surface.
We can ignore the lateral surface of the cylinder, since the electric field is parallel to it, therefore the flux through the lateral surface of the cylinder is zero (because
and
).
On the other two surfaces, the flux is equal and with opposite sign. In fact, on the first surface the flux will be

where r is the radius, and where we have taken
since the perpendicular to the surface is parallel to the direction of the electric field, so
. On the second surface, however, the perpendicular to the surface is opposite to the electric field, so
and
, therefore the flux is

And the net flux through the cylinder is

4.0 ilynits per second Alaskan es muy du facial in the oscillates 1.99