Using the kinematic equation below we can determine the distance traveled if t=2, a=7.4m/s^2. First we must determine the final velocity:

Now we will determine the distance traveled:

Therefore, the drag racer traveled 81.83 meters in 2 seconds.
Answer:
The sun looks bigger than other stars because it is closer to the Earth, distance makes it look larger
Answer:
7.2 cm
Explanation:
magnetic field, B = 0.301 T
speed, v = 7.92 x 10^5 m/s
mass, m = 4.39 x 10^-27 kg
q = 1.6 x 10^-19 C
The radius of singly changed ion is given by

where, m is the mass of ion, v be the speed of ion, B is the magnetic field and q be the charge

r = 0.072 m
r = 7.2 cm
Answer:
<h2>C. <u>
0.55 m/s towards the right</u></h2>
Explanation:
Using the conservation of law of momentum which states that the sum of momentum of bodies before collision is equal to the sum of the bodies after collision.
Momentum = Mass (M) * Velocity(V)
BEFORE COLLISION
Momentum of 0.25kg body moving at 1.0m/s = 0.25*1 = 0.25kgm/s
Momentum of 0.15kg body moving at 0.0m/s(body at rest) = 0kgm/s
AFTER COLLISION
Momentum of 0.25kg body moving at x m/s = 0.25* x= 0.25x kgm/s
<u>x is the final velocity of the 0.25kg ball</u>
Momentum of 0.15kg body moving at 0.75m/s(body at rest) =
0.15 * 0.75kgm/s = 0.1125 kgm/s
Using the law of conservation of momentum;
0.25+0 = 0.25x + 0.1125
0.25x = 0.25-0.1125
0.25x = 0.1375
x = 0.1375/0.25
x = 0.55m/s
Since the 0.15 kg ball moves off to the right after collision, the 0.25 kg ball will move at <u>0.55 m/s towards the right</u>
<u></u>
To prepare a 10.0% w/v solution of salt in water in a 100 mL volumetric flask, first you must weigh 10 g of salt because the 10 % 100 is 10 and the given should be 10 % w/v. place the 10 g salt to the volumetric flask then add water up until to mark of the volumetric flask then shake it.