Answer:
After 1 sec = 4.9 m
After 2 sec = 19.6 m
After 3 sec = 44.1 m
After 4 sec = 78.4 m
After 5 sec = 122.5 m
Explanation:
After 1 sec:
<em>u=0m/s t=1 s a=9.8m/s²</em>
s = ut + (1/2)at²
=0(1) + (1/2)(9.8)(1²) = 4.9m
After 2 sec:
<em>u=0m/s t=2 s a=9.8m/s²</em>
s = ut + (1/2)at²
=0(2) + (1/2)(9.8)(2²) = 19.6m
After 3 sec:
<em>u=0m/s t=3 s a=9.8m/s²</em>
s = ut + (1/2)at²
=0(3) + (1/2)(9.8)(3²) = 44.1m
After 4 sec:
<em>u=0m/s t=4 s a=9.8m/s²</em>
s = ut + (1/2)at²
=0(4) + (1/2)(9.8)(4²) = 78.4m
After 5 sec:
<em>u=0m/s t=5 s a=9.8m/s²</em>
s = ut + (1/2)at²
=0(5) + (1/2)(9.8)(5²) = 122.5m
Answer : (B) Prominence
Explanation :
A large, glittering and gaseous characteristic which is extending outward from the surface of the sun is called <em>Prominence</em>.
<em>Photosphere</em> is one of the layer of sun where the prominence are anchored and then they move into the corona of the sun.
<em>Corona</em> is a region in the surface of the sun which is the constituent of hot ionized gases (plasma).
The prominence consists of colder plasma and this prominence plasma is much more shining and denser as compared to coronal plasma.
Hence, the correct option is (B) Prominence.
Answer:
The crest to trough distance = 8 m
Explanation:
Given that,
The amplitude of a particular wave is 4.0 m.
We need to find the crest to trough distance.
We know that,
Amplitude = The distance from the base line to the crest or the the distance from the baseline to the trough.
It means,
Distance from crest to trough = 2(Amplitude)
= 2(4)
= 8 m
Hence, the crest to trough distance is equal to 8 m.
<span>The answer is The conductance of a conductor is inversely
proportional to the cross-sectional area of the conductor.</span>
<span>Conductance is directly related to the ease offered by any material to the passage of electric current. Conductance is the opposite of resistance. The higher the conductance, the lower the resistance and vice versa, the greater the resistance, the less conductance, so both are inversely proportional</span>