So, the force of gravity that the asteroid and the planet have on each other approximately 
<h3>Introduction</h3>
Hi ! Now, I will help to discuss about the gravitational force between two objects. The force of gravity is not affected by the radius of an object, but radius between two object. Moreover, if the object is a planet, the radius of the planet is only to calculate the "gravitational acceleration" on the planet itself,does not determine the gravitational force between the two planets. For the gravitational force between two objects, it can be calculated using the following formula :

With the following condition :
- F = gravitational force (N)
- G = gravity constant ≈
N.m²/kg²
= mass of the first object (kg)
= mass of the second object (kg)- r = distance between two objects (m)
<h3>Problem Solving</h3>
We know that :
- G = gravity constant ≈
N.m²/kg²
= mass of the planet X =
kg.
= mass of the planet Y =
kg.- r = distance between two objects =
m.
What was asked :
- F = gravitational force = ... N
Step by step :





<h3>Conclusion</h3>
So, the force of gravity that the asteroid and the planet have on each other approximately

<h3>See More</h3>
So we want to know what is the purpose of a lanyard attached to a safety switch. So in case the operator falls overboard a safety switch is installed and connected to the operators hand or waist. Which ever is more practical. This safety switch turns off the motor.
Answer: The answer is B
Explanation: A correlation generally is a mutual relationship/connection or the process of establishing the relationship/connection between 2+ things
Answer:
A×B=C×D
500×0.5=250×X
250=250×X
X=250/250=1
X=1 m
Explanation:
note: if the force plus two, the distance will be half.
Answer:
So coefficient of kinetic friction will be equal to 0.4081
Explanation:
We have given mass of the block m = 0.5 kg
The spring is compressed by length x = 0.2 m
Spring constant of the sprig k = 100 N/m
Blocks moves a horizontal distance of s = 1 m
Work done in stretching the spring is equal to 
This energy will be equal to kinetic energy of the block
And this kinetic energy must be equal to work done by the frictional force
So 


So coefficient of kinetic friction will be equal to 0.4081