Answer:
a. 7.046 Nm²/C
b. 2.348 Nm²/C
Explanation:
Data given:
Base of equilateral triangle = 25.0 cm = 0.25 m
Strength of electric field = 260 N/C
In order to find the electric flux we first have to find out the area of triangle.
Area of triangle =
=
= 0.0271 m³
Lets find electric flux,
Electric Flux = E. A
= 260×0.0271
= 7.046 Nm²/C
Now we can find the electric flux through each of the three sides.
Electric flux through three sides =
= 2.348 N m²/C
Answer:
1. Fleming's left hand rule
2. It must be projected towards the east
Explanation:
Fleming's left-hand rule states that; When a current-carrying conductor is placed in an external magnetic field, the conductor experiences a force perpendicular to both the field and to the direction of the current flow. This rule was first put forward by John Ambrose Fleming in the later part of the nineteenth century.
Hence if the thumb, fore finger and middle finger of the lefthand are held mutually at right angles to each other; the thumb shows the direction of motion, the fore finger shows the direction of the field while the middle finger shows the direction of the current.
Hence, if the alpha particle is projected eastwards(at right angles) to the uniform magnetic field, it will be deflected southwards in the magnetic field.
Answer:
Sometimes may cause involuntary responses like twitching
Explanation:
When two magnets are brought together, the opposite poles will attract one another, but the like poles will repel one another. This is similar to electric charges. Like charges repel, and unlike charges attract.
pls. mark brainliest am. dyning for it
Answer:
1. Our ears can sort out the individual sine waves from a mixture of two or more sine waves, so we hear the pure tones that make up a complex tone.
Explanation:
A complex tone is a sound wave that consist of two or more forms of audible sound frequencies. Sound wave is a mechanical wave that is longitudinal, and could be represented by a sine wave because of it sinusoidal manner of propagation.
A Fourier analyzer can be used to differentiate individual sine waves from a combination of two or more of it; which is as the same function performed by human ear. To the human ear, a sound wave that consist of more than one sine wave will have perceptible harmonics which would be distorted and turn to a noise.
Thus, the human ear makes it possible to hear the pure tones that make up a complex tone.