1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elza [17]
3 years ago
14

True or false A ball thrown horizontally.Gravity causes the ball to continue horizontally.

Physics
2 answers:
deff fn [24]3 years ago
8 0

Answer:

false

Explanation:

sasho [114]3 years ago
6 0
False is the correct answer.
You might be interested in
Which pulls harder the earth or the student
Nana76 [90]

Answer:

wha

Explanation:

5 0
3 years ago
4. A cinder block is sitting on a platform 20 m high. It has a mass of 4 kg. The block has energy. Calculate it.
zavuch27 [327]

Answer:

Explanation:

Since the block is at rest in an elevated position, we can assume that it only has potential energy.

U=mgh is the formula for potential energy where U=potential energy, m= mass, g=acceleration due to gravity, and h=height.

Plug in known variables....

U=4kg*9.8m/s^2*20m

U=784 joules of potential energy or letter A.

4 0
2 years ago
Ultraviolet rays are used to _____.
NeTakaya

Answer:

Grow plants where little light is available

Explanation:

The plants need the ultraviolet rays in order to be able to survive and develop. The need mainly comes from the dependence of these rays for production of food, in a process known as photosynthesis. The plants are producers, thus they create their own food. In order to be able to do that they are using the ultraviolet rays, as well as water, and carbon dioxide. By combining them, the plants manage to create glucose for them, and that is their food source. The plants that are kept at places where there's not enough light are often exposed to ultraviolet rays so that they are able to perform the process of photosynthesis and grow properly.

8 0
2 years ago
Read 2 more answers
A spring gun is made by compressing a spring in a tube and then latching the spring at the compressed position. A 4.97-g pellet
dimaraw [331]

Answer:

v  = 2.8898 \frac{m}{s}

Explanation:

This is a problem easily solve using energy conservation. As there are no non-conservative forces, we know that the energy is conserved.

When the spring is compressed downward, the spring has elastic potential energy. When the spring is relaxed, there is no elastic potential energy, but the pellet will have gained gravitational potential energy and kinetic energy. Lets see what are the terms for each of this.

<h3>Elastic potential energy</h3>

We know that a spring following Hooke's Law has a elastic potential energy:

E_{ep} = \frac{1}{2} k (\Delta x)^2

where \Delta x is the displacement from the relaxed length and k is the spring's constant.

To obtain the spring's constant, we know that Hooke's law states that the force made by the spring is :

\vec{F} = - k \Delta \vec{x}

as we need 9.12 N to compress 4.60 cm, this means:

k = \frac{9.12 \ N}{4.6 \ 10^{-2} \ m}

k = 198.26 \ \frac{ N}{m}

So, the elastic energy of the compressed spring is:

E_{ep} = \frac{1}{2} 198.26 \ \frac{ N}{m} (4.6 \ 10^{-2} \ m)^2

E_{ep} = 0.209759 \ Joules

And when the spring is relaxed, the elastic potential energy will be zero.

<h3>Gravitational potential energy</h3>

To see how much gravitational potential energy will the pellet win, we can use

\Delta E_{gp} = m g \Delta h

where m is the mass of the pellet, g is the acceleration due to gravity and \Delta h is the difference in height.

Taking all this together, the gravitational potential energy when the spring is relaxed will be:

\Delta E_{gp} = 4.97 \ 10^{-3} kg \ 9.8 \frac{m}{s^2} 4.6 \ 10^{-2} m

\Delta E_{gp} = 0.00224 \ Joules

<h3>Kinetic Energy</h3>

We know that the kinetic energy for a mass m moving at speed v is:

E_k = \frac{1}{2} m v^2

so, for the pellet will be

E_k = \frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2

<h3>All together</h3>

By conservation of energy, we know:

E_{ep} = \Delta E_{gp} + E_k

0.209759 \ Joules = 0.00224 \ Joules + \frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2

So

\frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2  = 0.209759 \ Joules - 0.00224 \ Joules

\frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2  = 0.207519 \ Joules

v  = \sqrt{ \frac{ 0.207519 \ Joules}{ \frac{1}{2} \ 4.97 \ 10^{-3} kg } }

v  = 2.8898 \frac{m}{s}

7 0
3 years ago
Electrons are allowed "in between" quantized energy levels, and, thus, only specific lines are observed. The energies of atoms a
lawyer [7]

Answer:

This is because The energies of atoms are quantized.

Electrons are allowed "in between" quantized energy levels, and, thus, only specific lines are observed

5 0
3 years ago
Other questions:
  • How is the mass number calculated for an element?
    5·1 answer
  • What is an independent variable ?
    10·2 answers
  • Why does the number of cooling fins effect the rate of energy transfer from a radiator?
    14·1 answer
  • When merging onto an expressway from an acceleration lane, you should
    10·1 answer
  • What happens to the amount of friction if you increase the mass of an object?
    5·2 answers
  • A wind turbine is rotating counterclockwise at 0.5 rev/s and slows to a stop in 10 s. Its blades are 20 m in length. (a) What is
    13·1 answer
  • A man stretches a rubber band around a newspaper. What type of
    11·1 answer
  • Does Archimedes principle hold good in a vessel in free fall​
    6·1 answer
  • When two forces are the same strength but act in opposite direction , they are called
    13·1 answer
  • water is know to boil at 100°C.A student boiled water and realised it's boiling point was 101°C.State two possible reasons ​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!