Impulse = mass * change in velocity (change in momentum) = Force * change in time
So, F=(m*change in v)/(change in t)
F=(60*20)/0.5=2400N
Therefore the magnitude of the average force exerted on the cyclist by the haystack is 2.4*10^3N
<span>So we wan't to know what will the Coulomb force be between two charged baloons will be if we double the distance between the them and Fc=0.16N. The coulomb force between two charges is Fc=k*Q1*Q2/r^2. So we see from the equation that the magnitude of the force will be smaller as we increase the distance. So let's increase the distance from r to R=2r. If we input thai into the equation we get: Fc=k*Q1*Q2/R^2. Now: Fc=k*Q1*Q2/(2r)^2. And finally: Fc= k*Q1*Q2/4r^2. And if we factor out 1/4 we get: Fc=(1/4)*k*Q1*Q2/r^2. Now we can see that if we double the distance the magnitude of the force will be smaller for a factor of 1/4 or the magnitude of the force will be smaller 4 times. So finally the force is (1/4)*0.16N= 0.04N. So the correct answer is A. 0.04 newtons. </span>
A thrust fault is a reverse fault with an extremely high dip (close to 90°). This is the false statement.
Answer: Option D
<u>Explanation:</u>
Faults are the fracture or fracture zone occurring on the rocks. These fractures can travel through the rocks leading to massive destruction. So, depending upon the direction of their travel, the faults can be classified as normal, reverse and strike slip fault. Also, the angle of dip along the fault is one of the important criteria for determining the type of faults.
There is dip-slip fault which has its movement along the vertical fault plane while the strike slip fault will be in horizontal direction. Similarly, an oblique fault will be acting in both vertical and the horizontal direction. So, the fourth statement related to thrust fault is false as in reverse fault or thrust fault the dip will be shallow and not high.