1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aleks04 [339]
4 years ago
11

A robot is on the surface of Mars. The angle of depression from a camera in the robot to a rock on the surface of Mars is 13.69

degrees13.69°. The camera is 198.0198.0 cm above the surface. How far is the camera from the​ rock?
Physics
1 answer:
ra1l [238]4 years ago
3 0

Answer:

The distance between the camera and the rock is 836.6 cm

Explanation:

A right triangle is formed where the hypotenuse (h) is the distance between the rock and the camera. One of the leg (l) is the distance between the camera and the surface. The angle between the hypotenuse and this leg is α = 90° - 13.69° = 76.31°. By definition:

cos α = adjacent/hypotenuse

cos(76.31) = 198.0/h

h = 198.0/cos(76.31)

h = 836.6 cm

You might be interested in
The energy your body gets from food is originally provided by which nuclear
Naily [24]

Answer:

Nuclear Fusion

Explanation:

The process releases energy because the total mass of the resulting single nucleus is less than the mass of the two original nuclei. The leftover mass becomes energy.

4 0
3 years ago
What happened to the speed of light if it travels from air into glass?
Ghella [55]

Answer:

it will disperse into many different colors

6 0
3 years ago
Read 2 more answers
un movil que parte del reposo alcanza una velocidad de 75 m/s en 13 segundos ¿cual su aceleracion y el espacio que recorrio en l
Dmitriy789 [7]

Answer:

Acceleration = 5.77 m/s²

Distance cover in 13 seconds = 487.56 meter

Explanation:

Given:

Final velocity of mobile device = 75 m/s

initial velocity of mobile device = 0 m/s

Time taken = 13 seconds

Find:

Acceleration

Distance cover in 13 seconds

Computation:

v = u + at

75 = 0 + (a)(13)

13a = 75

a = 5.77

Acceleration = 5.77 m/s²

s = ut + (1/2)(a)(t²)

s = (0)(t) + (1/2)(5.77)(13²)

Distance cover in 13 seconds = 487.56 meter

8 0
3 years ago
How do you change the currents in a circuit
mel-nik [20]
-
Eddy Current Testing

Introduction
Basic Principles
History of ET
Present State of ET

The Physics
Properties of Electricity
Current Flow & Ohm's Law
Induction & Inductance
Self Inductance
Mutual Inductance
Circuits & Phase
Impedance
Depth & Current Density
Phase Lag

Instrumentation
Eddy Current Instruments
Resonant Circuits
Bridges
Impedance Plane
Display - Analog Meter

Probes (Coils)
Probes - Mode of Operation
Probes - Configuration
Probes - Shielding
Coil Design
Impedance Matching

Procedures Issues 
Reference Standards
Signal Filtering

Applications
Surface Breaking Cracks
SBC using Sliding Probes
Tube Inspection 
Conductivity 
Heat Treat Verification
Thickness of Thin Mat'ls
Thickness of Coatings

Advanced Techniques
Scanning
Multi-Frequency Tech.
Swept Frequency Tech.
Pulsed ET Tech.
Background Pulsed ET
Remote Field Tech.

Quizzes

Formulae& Tables
EC Standards & Methods
EC Material Properties
-






Current Flow and Ohm's Law

Ohm's law is the most important, basic law of electricity. It defines the relationship between the three fundamental electrical quantities: current, voltage, and resistance. When a voltage is applied to a circuit containing only resistive elements (i.e. no coils), current flows according to Ohm's Law, which is shown below.

I = V / R 

Where: 

I =

Electrical Current (Amperes)

V =

Voltage (Voltage)

R =

Resistance (Ohms)

    

Ohm's law states that the electrical current (I) flowing in an circuit is proportional to the voltage (V) and inversely proportional to the resistance (R). Therefore, if the voltage is increased, the current will increase provided the resistance of the circuit does not change. Similarly, increasing the resistance of the circuit will lower the current flow if the voltage is not changed. The formula can be reorganized so that the relationship can easily be seen for all of the three variables.

The Java applet below allows the user to vary each of these three parameters in Ohm's Law and see the effect on the other two parameters. Values may be input into the dialog boxes, or the resistance and voltage may also be varied by moving the arrows in the applet. Current and voltage are shown as they would be displayed on an oscilloscope with the X-axis being time and the Y-axis being the amplitude of the current or voltage. Ohm's Law is valid for both direct current (DC) and alternating current (AC). Note that in AC circuits consisting of purely resistive elements, the current and voltage are always in phase with each other.

Exercise: Use the interactive applet below to investigate the relationship of the variables in Ohm's law. Vary the voltage in the circuit by clicking and dragging the head of the arrow, which is marked with the V. The resistance in the circuit can be increased by dragging the arrow head under the variable resister, which is marked R. Please note that the vertical scale of the oscilloscope screen automatically adjusts to reflect the value of the current.

See what happens to the voltage and current as the resistance in the circuit is increased. What happens if there is not enough resistance in a circuit? If the resistance is increased, what must happen in order to maintain the same level of current flow?


4 0
4 years ago
A roller coaster takes energy to make the first rise, but then it should be able to run the course of the track without any inpu
den301095 [7]
I would say that this is the first law of thermodynamics.
6 0
3 years ago
Read 2 more answers
Other questions:
  • The spring is now compressed so that the unconstrained end moves from x=0 to x=L. Using the work integral W=∫xfxiF⃗ (x⃗ )⋅dx⃗ ,
    6·1 answer
  • A ski lift is used to transport people from the base of a hill to the top. If the lift leaves the
    9·1 answer
  • SOMEBODY PLEASE HELP!!! Indicate the reasons why the centripetal acceleration (and centripetal force) always point to the center
    15·1 answer
  • A wire 6.90 m long with diameter of 2.15 mm has a resistance of 0.0320 Ω. Find the resistivity of the material of the wire. rho
    7·1 answer
  • According to the chart, which region of the country would be considered the most heavily religious?
    7·1 answer
  • What units should be used when measuring the mass of a lady bug?
    13·1 answer
  • Match the half life and time information to the percentage of radioactive isotope left.
    12·1 answer
  • An object of mass m moves horizontally, increasing in speed from 0 to v in a time t. The power necessary to accelerate the objec
    9·1 answer
  • An electron (e = 1.6 x 10-19 C) is traveling at 4.00 x 107 m/s due North in a horizontal plane through a point where the earth’s
    12·1 answer
  • Will a roller coaster with a higher starting point be a faster ride? Why or why not
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!