Answer:
Mechanical resonance frequency is the frequency of a system to react sharply when the frequency of oscillation is equal to its resonant frequency (natural frequency).
The physical dimension of the silicon is 10kg
Explanation:
Using the formular, Force, F = 1/2π√k/m
At resonance, spring constant, k = mw² ( where w = 2πf), when spring constant, k = centripetal force ( F = mw²r).
Hence, F = 1/2π√mw²/m = f ( f = frequency)
∴ f = F = mg, taking g = 9.8 m/s²
100 Hz = 9.8 m/s² X m
m = 100/9.8 = 10.2kg
Answer:
a. ε₁=-0.000317
ε₂=0.000017
θ₁= -13.28° and θ₂=76.72°
b. maximum in-plane shear strain =3.335 *10^-4
Associated average normal strain ε(avg) =150 *10^-6
θ = 31.71 or -58.29
Explanation:

ε₁=-0.000317
ε₂=0.000017
To determine the orientation of ε₁ and ε₂

θ= -13.28° and 76.72°
To determine the direction of ε₁ and ε₂

=-0.000284 -0.0000335 = -0.000317 =ε₁
Therefore θ₁= -13.28° and θ₂=76.72°
b. maximum in-plane shear strain

=3.335 *10^-4

ε(avg) =150 *10^-6
orientation of γmax

θ = 31.71 or -58.29
To determine the direction of γmax

= 1.67 *10^-4
Answer:
Hence, the three effects of electric current are heating effect, magnetic effect and chemical effect.
Answer:
Estimated number of indigenous faults remaining undetected is 6
Explanation:
The maximum likelihood estimate of indigenous faults is given by,
here,
= the number of unseeded faults = 6
= number of seeded faults = 30
= number of seeded faults found = 15
So NF will be calculated as,

And the estimate of faults remaining is
= 12 - 6 = 6