1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
icang [17]
3 years ago
13

A pressure cylinder has an outer diameter 200 mm, maximum external pressure 4 MPa, and maximum allowable shear stress 27.5 MPa.

Determine the appropriate value of the minimum wall thickness The appropriate value of the minimum wall thickness is_____
Engineering
1 answer:
ludmilkaskok [199]3 years ago
4 0

Answer:

The minimum value of wall thickness t=3.63 mm.

Explanation:

Given:

  D=200 mm

 P=4 MPa

t= Wall thickness

maximum shear stress=27.5 MPa

We know that

       hoop stress \sigma _{h}=\frac{Pd}{2t}

      Longitudinal stress \sigma _{l}=\frac{Pd}{4t}

So maximum shear tress in plane\tau _{max}=\dfrac{\sigma _h-\sigma _l}{2}

              \tau _{max}=\dfrac{Pd}{8t}

Now by putting the value

       27.5=\dfrac{4\times 200}{8t}

 So   t=3.36 mm

The minimum value of wall thickness t=3.63 mm.

You might be interested in
1. Examine the following circuit. Find RT, I3, R1, R2, R3, V1, V2 and V3. Show all of your work clearly below.
Mkey [24]

Explanation:

Ohm's law is used here. V = IR, and variations. The voltage across all elements is the same in this parallel circuit. (V1 =V2 =V3)

The total supply current is the sum of the currents in each of the branches. (It = I1 +I2 +I3)

Rt = (8 V)/(8 A) = 1 Ω . . . . supply voltage divided by supply current

I3 = 8A -3A -4A = 1 A . . . . supply current not flowing through other branches

R1 = (8 V)/(3 A) = 8/3 Ω

R2 = (8 V)/(4 A) = 2 Ω

R3 = (8 V)/(I3) = (8 V)/(1 A) = 8 Ω

V1 = V2 = V3 = 8 V

6 0
3 years ago
The "Big Dig" was the nickname of the civil engineering project that redesigned the highway Infrastructure for the city of
zheka24 [161]
Geotechnical since it’s geologicaly based
4 0
3 years ago
As part of a chemistry experiment, Austin ends up with a beaker containing a mixture of two liquids, which he knows have boiling
asambeis [7]

Answer:

Distillation, heat

Explanation:

Here in this question, we simply want to look at the best options that could fit in the gaps.

We have a mixture of liquids having boiling points which is far from each other.

Whenever we have a mixture of liquids with boiling points far away from each other, the best technique to use in separating them is to use distillation. That is why we have that as the best fit for the first missing gap.

Now, to get the liquids to separate from each other, we shall be needing the heating mantle for the application of heat. This ensures that the mixture is vaporized. After vaporization, the condensing tube will help to condense the vapor of each of the liquids once we reach the boiling point of either of the two.

Kindly note that the liquid with the lower temperature will evaporate first and will be first obtained. In fact after reaching a little above the boiling point of the lower boiling liquid, we can be sure that what we have left in the mixture pot is the second other liquid with the higher boiling point.

7 0
3 years ago
A cylinder with a 6.0 in. diameter and 12.0 in. length is put under a compres-sive load of 150 kips. The modulus of elasticity f
jeka94

Answer:

Final Length = 11.992 in

Final Diameter = 6.001 in

Explanation:

First we calculate the cross-sectional area:

Area = A = πr² = π(3 in)² = 28.3 in²

Now, we calculate the stress:

Stress = Compressive Load/Area

Stress = - 150 kips/28.3 in²

Stress = -5.3 ksi

Now,

Modulus of Elasticity = Stress/Longitudinal Strain

8000 ksi = -5.3 ksi/Longitudinal Strain

Longitudinal Strain = -6.63 x 10⁻⁴

but,

Longitudinal Strain = (Final Length - Initial Length)/Initial Length

-6.63 x 10⁻⁴ = (Final Length - 12 in)/12 in

Final Length = (-6.63 x 10⁻⁴)(12 in) + 12 in

<u>Final Length = 11.992 in</u>

we know that:

Poisson's Ratio = - Lateral Strain/Longitudinal Strain

0.35 = - Lateral Strain/(- 6.63 x 10⁻⁴)

Lateral Strain = (0.35)(6.63 x 10⁻⁴)

Lateral Strain = 2.32 x 10⁻⁴

but,

Lateral Strain = (Final Diameter - Initial Diameter)/Initial Diameter

2.32 x 10⁻⁴ = (Final Diameter - 6 in)/6 in

Final Diameter = (2.32 x 10⁻⁴)(6 in) + 6 in

<u>Final Diameter = 6.001 in</u>

8 0
3 years ago
35 points an brainiest if correct
Jet001 [13]
I think the answer is B. 10D
6 0
3 years ago
Other questions:
  • An immersion heater has a resistance of 50Ω and carries a current of 2.5A current. What will be the final temperature of 500 g o
    11·1 answer
  • A gear train has two gears. The driver gear has 8 teeth and a diametral pitch of 6 teeth/inch. the follower gear has 24 teeth. W
    13·1 answer
  • Given the circuit at the right in which the following values are used: R1 = 20 kΩ, R2 = 12 kΩ, C = 10 µ F, and ε = 25 V. You clo
    11·1 answer
  • The products of combustion from a burner are routed to an industrial application through a thin-walled metallic duct of diameter
    11·1 answer
  • What is mechanical engineer​
    14·1 answer
  • 48/64 reduced to its lowest term
    5·2 answers
  • 3
    6·1 answer
  • If you’re still enrolled in school, but are looking for a job, on your resume you should highlight:
    15·1 answer
  • soy nueva en esto me pudieran ayudar nadie me ayuda soy de peru y no endiendo nada de lo que me dicen alguie me puediera explica
    10·1 answer
  • Why do the quadrants in coordinate plane go anti-clockwise?.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!