When a substance is changing state, its temperature remains constant. This is because energy is used to increase/decrease kinetic energy of the molecules of the substance, increasing/decreasing the inter-molecular distance and overcoming the energy bonds present between the molecules. Therefore, no energy is used to raise the temperature of the substance and therefore it remains constant
I don't see the options for an answer, so here is a list of all of the transition metals lol
- <em>Scandium</em>
- <em>Titanium</em>
- <em>Vanadium</em>
- <em>Chromium</em>
- <em>Manganese</em>
- <em>Iron</em>
- <em>Cobalt</em>
- <em>Nickel</em>
- <em>Copper</em>
- <em>Zinc</em>
- <em>Yttrium</em>
- <em>Zirconium</em>
- <em>Niobium</em>
- <em>Molybdenum</em>
- <em>Technetium</em>
- <em>Ruthenium</em>
- <em>Rhodium</em>
- <em>Palladium</em>
- <em>Silver</em>
- <em>Cadmium</em>
- <em>Lanthanum</em>
- <em>Hafnium</em>
- <em>Tantalum</em>
- <em>Tungsten</em>
- <em>Rhenium</em>
- <em>Osmium</em>
- <em>Iridium</em>
- <em>Platinum</em>
- <em>Gold</em>
- <em>Mercury</em>
- <em>Actinium</em>
- <em>Rutherfordium</em>
- <em>Dubnium</em>
- <em>Seaborgium</em>
- <em>Bohrium</em>
- <em>Hassium</em>
- <em>Meitnerium</em>
- <em>Darmstadtium</em>
- <em>Roentgenium</em>
- <em>Copernicium p</em>
Double replacement because H and K are both switching
Answer:
(a) H₃O⁺(aq) + H₂PO₄⁻(aq) ⟶ H₃PO₄(aq) + H₂O(ℓ)
(b) OH⁻(aq) + H₃O⁺(aq) ⟶ 2H₂O(ℓ)
Explanation:
The equation for your buffer equilibrium is:
H₃PO₄(aq) + H₂O(ℓ) ⇌ H₃O⁺(aq)+ H₂PO₄⁻(aq)
(a) Adding H₃O⁺
The hydronium ions react with the basic dihydrogen phosphate ions.
H₃O⁺(aq) + H₂PO₄⁻(aq) ⟶ H₃PO₄(aq) + H₂O(ℓ)
(b) Adding OH⁻
The OH⁻ ions react with the more acidic hydronium ions.
OH⁻(aq) + H₃O⁺(aq) ⟶ 2H₂O(ℓ)
Hydrogen peroxide is H2O2, while water is H2O and oxygen (a diatomic gas) is O2. The (unbalanced) reaction is:
H2O2 --> H2O + O2
Notice that the H2O2 has 2 H atoms, and so does H2. This means that both must have the same coefficients, and we can adjust the coefficient of O2. Since H2O2 has 2 O atoms, and H2O has 1, we multiply O2 by 1/2:
H2O2 --> H2O + (1/2)O2
This has an equivalent number of H and O atoms on either side, but we want the coefficients to be whole numbers, so we multiply everything by 2:
2H2O2 --> 2H2O + O2