Answer:
C) mass.
Explanation:
The speed of a body is given by the relation between the displacement of a body in a given time. It can be considered the greatness that measures how fast a body moves.
Speed analysis is divided into two main topics: average speed and instantaneous speed. It is considered a vector quantity, that is, it has a module (numerical value), a direction (Ex .: vertical, horizontal) and a direction (Ex .: forward, upwards). However, for elementary problems, where there is displacement in only one direction, the so-called one-dimensional movement, it is advisable to treat it as a scalar quantity (with only numerical value).
The mass of an object is not an important factor in determining the speed of that object. However, time, direction and distance are important factors in determining speed.
The formula for magnesium chlorate is Mg(ClO3)2.
The molecule with higher dipole moment is COFH because the geometry of the molecule in the COF2 nearly cancel the dipolar moment of each other. To be more clear:
The dipolar moment is the vectorial sum of all bond moments in the molecule or dipolar moment of each bond. The dipolar moment of a molecule with three or more atoms is determined by bond polarity as their geometry.
COF2 has a trigonal planar structure which are symmetric. The electronegativity of oxygen is slightly different regarding fluor. So as you can see in the image, the electronic density is specially displaced to the fluor atoms, but either to the oxygen atom.
COFH has a trigonal structure but differs from COF2 because there is an hydrogen who is donating it's electronic density, so in this zone the electronic density is less than over oxygen or fluor. That makes bond angles be different between them.
Answer:
The correct answer is (b)
Explanation:
Charles law describes the behavior of gases when heated. Charles law states that the volume of a given mass of gas would increase as its Kelvin temperature increases provided the pressure is held constant. That is the volume of a given mass of gas is directly proportional to its Kelvin temperature at constant pressure