Answer:
52 da
Step-by-step explanation:
Whenever a question asks you, "How long to reach a certain concentration?" or something similar, you must use the appropriate integrated rate law expression.
The i<em>ntegrated rate law for a first-order reaction </em>is
ln([A₀]/[A] ) = kt
Data:
[A]₀ = 750 mg
[A] = 68 mg
t_ ½ = 15 da
Step 1. Calculate the value of the rate constant.
t_½ = ln2/k Multiply each side by k
kt_½ = ln2 Divide each side by t_½
k = ln2/t_½
= ln2/15
= 0.0462 da⁻¹
Step 2. Calculate the time
ln(750/68) = 0.0462t
ln11.0 = 0.0462t
2.40 = 0.0462t Divide each side by 0.0462
t = 52 da
Answer:
3.052 × 10^24 particles
Explanation:
To get the number of particles (nA) in a substance, we multiply the number of moles of the substance by Avogadro's number (6.02 × 10^23)
The mass of Li2O given in this question is as follows: 151grams.
To convert this mass value to moles, we use;
moles = mass/molar mass
Molar mass of Li2O = 6.9(2) + 16
= 13.8 + 16
= 29.8g/mol
Mole = 151/29.8g
mole = 5.07moles
number of particles (nA) of Li2O = 5.07 × 6.02 × 10^23
= 30.52 × 10^23
= 3.052 × 10^24 particles.
The particles of gases have more kinetic energy than liquids and gases.
Explanation:
- We know that in case of solids the molecules are very tightly packed , in case of liquids the molecules are loosely packed and lastly in case of gases the molecules are very loosely packed.
- As we known in case of solids energy present is very less and in case of liquids energy present is more than solids and lastly in case of gases the energy present is most.
- Gases have more kinetic energy because the particles present in gaseous form can move easily without any obstruction.