Answer:
1cm
Explanation:
The amplitude of a wave is the distance from the center line (in this case the 1 cm marker on the vertical ruler) to the highest or lowest point. For this image the highest point is 2 cm, 2cm-1cm=1cm. The lowest point is 0cm, 1cm-0cm=1cm.
9.8 ms^-2 is acceleration
Answer:
The value of heat transfer during the process Q = - 29.49 KJ
Explanation:
Given data
= 50
= 344.7 k pa
= 0.113 
F = 366.4 K
= 477.6 K
Poly tropic index n = 1.2
gas constant for oxygen = 0.26 
From ideal gas equation
= m R 
Put all the values in above equation we get
⇒ 344.7 × 0.113 = m × 0.26 × 366.4
⇒ m = 0.408 kg
Heat transfer in poly tropic process is given by
Q = ![\frac{\gamma - n}{( \gamma - 1)( n - 1)} [ {m R (T_{1} - T_{2} ) ]](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cgamma%20-%20n%7D%7B%28%20%5Cgamma%20-%201%29%28%20n%20-%201%29%7D%20%5B%20%7Bm%20R%20%28T_%7B1%7D%20-%20T_%7B2%7D%20%20%29%20%5D)
Put all the values in above formula we get
⇒ Q = ![\frac{1.4 - 1.2}{( 1.4 - 1)( 1.2 - 1)} [ {m R (T_{1} - T_{2} ) ]](https://tex.z-dn.net/?f=%5Cfrac%7B1.4%20-%201.2%7D%7B%28%201.4%20-%201%29%28%201.2%20-%201%29%7D%20%5B%20%7Bm%20R%20%28T_%7B1%7D%20-%20T_%7B2%7D%20%20%29%20%5D)
⇒ Q = 2.5 × 0.408 × 0.26 × ( 366.4 - 477.6 )
⇒ Q = - 29.49 KJ
This is the value of heat transfer during the process & negative sign shows that heat is lost during the process.
I actually know the answer to this one, you use pennies to find the atomic weight of a penny, it really doesn't have a weight. LOL
Answer:
8.3 x 10⁻⁷ C
Explanation:
Electric flux will enter the face at x=0 and exit at face x= 25 m
On the other faces , field lines are parallel so no flux will enter or exit .
Flux entering the face at x = 0
= electric field x face area
= 560 x 25 x 25 = 350000 weber
Flux exiting the face at x = 25
= 410 x 25 x25
= 256250 weber
Net flux exiting from cube ( closed face )
350000 - 256250 = 93750 web
Apply gauss'es theorem
Q / ε = Flux coming out
Q is charge inside the closed cube
Q / ε = 93750
Q = 8.85 x 10⁻¹² x 93750
= 8.3 x 10⁻⁷ C