a yoyo in someones hand is an example of potential energy
Answer:
2.9 M
Explanation:
The concentration-time equation for a second order reaction is:
1/[A] = kt + 1/[A°]
Where,
A = concentration remaining at time, t
A° = initial concentration
k = rate constant
1/[A] = (1.80 x 10^-3) * (45.6) + 1/3.81
1/[A] = 0.345
= 1/0.345
= 2.9 M.
Answer:
F₁ = 4 F₀
Explanation:
The force applied on the string by the ball attached to it, while in circular motion will be equal to the centripetal force. Therefore, at time t₀, the force on ball F₀ is given as:
F₀ = mv₀²/r --------------- equation (1)
where,
F₀ = Force on string at t₀
m = mass of ball
v₀ = speed of ball at t₀
r = radius of circular path
Now, at time t₁:
v₁ = 2v₀
F₁ = mv₁²/r
F₁ = m(2v₀)²/r
F₁ = 4 mv₀²/r
using equation (1):
<u>F₁ = 4 F₀</u>
Because the particles of a solid are not free to move,
no matter how hot and buoyant they become.
A covalent bond is between two nonmetals. An ionic bond is between a metal and a nonmetal. Potassium is a metal and iodine is a nonmetal, so their bond would most likely be ionic.