This problem is providing the mass, energy, initial temperature and specific heat of a sample of copper that is required to calculate the final temperature.
Thus, we recall the general heat equation:

Which has to be solved for the final temperature,
as follows:

Finally, we plug in the numbers to obtain:

However, this result is not given in the choices.
Learn more:
Answer:
The correct answer is "Electrons are transferred in an ionic bond"
Explanation:
The covalent bond is the chemical bond between atoms where electrons are shared, forming a molecule. Covalent bonds are established between non-metallic elements, such as hydrogen H, oxygen O and chlorine Cl. These elements have many electrons in their outermost level (valence electrons) and have a tendency to gain electrons to acquire the stability of the electronic structure of noble gas. The shared electron pair is common to the two atoms and holds them together.
An ionic bond is produced between metallic and non-metallic atoms, where electrons are completely transferred from one atom to another. During this process, one atom loses electrons and another one gains them, forming ions. Usually, the metal gives up its electrons forming a cation to the nonmetal element, which forms an anion.
In conclusion, chemical bonds are made so that atoms can have their entire outer layer, and thus have a stable electronic configuration. In the ionic bond, when the metallic atom has only one electron in its outer layer and the non-metallic one needs an electron to complete its layer; The metallic atom seats its electron to the non-metallic one. In the same way, the electron is shared in the covalent bond in order to achieve equilibrium.
Then, the main differences between the two bonds are that the ionic bond occurs between two different atoms (metallic and non-metallic), while the covalent bond occurs between two equal atoms (non-metallic). And in the covalent bond there is an electron compartment, while in the ionic bond there is an electron transfer.
So, the correct answer is "Electrons are transferred in an ionic bond"
1. Convert 135g Fe2O3 to moles, divide by 2, and multiply the resulting number by the molar mass of Al
Answer:
The easiest way to identify a double displacement reaction is to check to see whether or not the cations exchanged anions with each other.
Explanation:
if the states of matter are cited, is to look for aqueous reactants and the formation of one solid product (since the reaction typically generates a precipitate).
<u>Answer:</u> The standard potential of the cell is 0.77 V
<u>Explanation:</u>
We know that:

The substance having highest positive
reduction potential will always get reduced and will undergo reduction reaction.
The half reaction follows:
<u>Oxidation half reaction:</u> 
<u>Reduction half reaction:</u>
( × 2)
To calculate the
of the reaction, we use the equation:

Substance getting oxidized always act as anode and the one getting reduced always act as cathode.
Putting values in above equation follows:

Hence, the standard potential of the cell is 0.77 V