<span>Scientists ignore the forces of attraction between particles in a gas under ordinary conditions</span><span> because the particles in a gas are apart and moving fast, rather than clustered and moving slow, therefore the forces of attraction are too weak to have a visible effect.</span>
Answer:
Neon (Ne) has the most stable outer electron configuration because the outer electron is completely filled and it has octet structure
Explanation:
The configuration of these elements is as follows;
Cl₁₇ = 2, 8,7 (the outer electron is 7)
Ca₂₀ = 2,8,8,2 (the outer electron is 2)
Ne₁₀ = 2,8 (the outer electron is 8)
Na₁₁ = 2,8,1 (the outer electron is 1)
Based on the outer electron value above, Neon (Ne) has the most stable outer electron configuration because the outer electron is completely filled and it has octet structure.
This problem has two parts; the first one asking for the concentration of NaBr given both its mass and volume and the second one asking for its volume given both mass and concentration. The answers turn out to be 0.158 M and 211 mL.
<h3>Molarity</h3>
In chemistry, the use of units of concentration depends on both the substances to analyze and their amounts. In such a way, for molarity, one needs the following relationship between the moles of solute and volume of solution:

Thus, for the first part of the problem we first calculate the moles in 2.60 g of NaBr via its molar mass:

Next, we convert the 160. mL to L by dividing by 1000 in order to obtain 0.160 L to subsequently calculate the molarity:

Next, since the moles remain the same and for the second part we are asked for the volume given the concentration, one can solve for the volume so as to obtain:

That in milliliters turns out to be:

Learn more about molarity: brainly.com/question/10053901
C
When the alpha particle hits the beryllium atoms at high speeds, it splits the atomic nuclei hence causing the nuclei particles flying. When exposed to an electric field, the path of the proton is curved towards the negative pole while neutrons are unaffected.
Explanation:
Neutrons are found in the dense part of atoms (the nucleus) along with protons. Unlike protons, however, that are positively charged, neutrons are uncharged particles. Neutrons are important in the stability of the atomic nuclei because they ensure that the positively charged particles (protons), which are cramped together in a tight space, do not repel each other because like-charges repel.
Learn More:
For more on neutrons check out;
brainly.com/question/13370178
brainly.com/question/1264222
#LearnWithBrainly